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Abstract

Over the past decade, researchers have demonstrated that
the technique of model checking can be extremely effective
when applied to security or e-commerce protocols. Model
checking is the process of determining whether a formal
model of the analyzed system satisfies a correctness prop-
erty specified as a temporal logic formula. Model check-
ing result is either a claim that the property is true or
else a counterexample showing that the property is false.
E-Commerce protocols are techniques used to secure E-
Commerce transactions. E-Commerce protocols have to
own one or more from the security properties like safety,
aliveness, authentication, and integrity. Unfortunately,
the conventional model checking does not have the defi-
nition of these security properties, which are essential for
the E-Commerce protocols. In addition, scalability is a
desirable property of a protocol, which indicates its abil-
ity to handle growing amounts of work in a graceful man-
ner, or to be readily enlarged. In this paper, we extend
the conventional NuSMV model checker by adding new
predicate layers to enhance its ability for verifying prop-
erties of E-Commerce protocols. The new predicates are
scalable that are used to check gradient properties of dif-
ferent E-Commerce protocols. The new model combines
features for model checking with predicate facilities. The
new model can analysis and verify E-Commerce protocols
easily and effectively. Therefore, we use to analyze some
E-Commerce protocols to verify its security properties.

Keywords: E-Commerce protocols, model checking, predi-
cate abstraction, scalability

1 Introduction

With continuing growth of E-Commerce on the Internet,
the issues of trust and fairness are becoming increasingly
important [16]. Therefore, E-Commerce protocols have
to address standard requirements such as confidential-
ity of information, integrity of data, cardholder account

authentication, and merchant authentication. These re-
quirements and corresponding functions are not specific
to E-Commerce protocols. These requirements are the
security requirements for E-Commerce protocols.

Consequently, various methods are proposed to address
the security risks arising in E-Commerce. Secure Socket
Layer (SSL) or the SSL-based protocol Transport Layer
Security (TLS) are usually used in preference to Secure
Electronic Transaction (SET) for Internet E-Commerce
transaction security. Recently, the three-domain (3D) ar-
chitecture has been introduced to try meet both security
and implementation requirements. Two main examples
of 3D schemes have been proposed, namely 3-Domain Se-
cure, which builds on the SSL/TLS protocol, and 3D SET,
which is a 3D version of SET [12]. To ensure fairness on
the E-transactions, there are protocols for fairness like the
NetBill and Fair-Exchange protocols. In addition, many
crypto-protocols use cryptographic techniques included to
support authentication of E-Commerce like Kerberos and
Needham-Schroeder (NS) protocols.

Software testing is one of the oldest forms of verifica-
tion. A 2002 study commissioned by the National Insti-
tute of Standards and Technology (NIST) found that soft-
ware errors cost the United States economy about $59.5
billion annually [13]. Traditionally formal methods and
software testing have been seen as rivals [11]. Formal
methods are a combination of a mathematical or logical
model of a system and its requirements, together with an
effective procedure for determining whether a proof that
a system satisfies its requirements is correct [17]. There
are several different formal methods for analyzing the pro-
tocol security, detecting protocol failures, and designing
secure protocols [17].

Over the past decade, researchers have demonstrated
that the technique of model checking can be extremely
effective when applied to security or e-commerce proto-
cols [14]. Model checking is the process of exploring a fi-
nite state space to determine whether a property holds [2].
Model checking result is either a claim that the property
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is true or else a counterexample showing that the property
is false. An important advance in model checking was the
introduction of symbolic representations of state spaces,
which allowed direct exploration of the state space to be
replaced by the manipulation of data structures repre-
senting the transition relation of the state space [2]. The
major problem of model checking is that the state spaces
arising from practical problems are often huge, generally
making exhaustive exploration infeasible [2].

One of the most successful symbolic model checkers is
the branching time model checker SMV (Symbolic Model
Verifier), which has been developed at school of com-
puter science of Carnegie Mellon University (CMU) [16].
NuSMV originated from the reengineering, reimplementa-
tion and extension of SMV [7]. The conventional NuSMV
model checker is used to verify NetBill, Fair Exchange,
and Needham-Schroeder protocols.

E-Commerce protocols have to own one or more of the
security properties like safety, authentication, integrity,
freshness. Unfortunately, the available NuSMV tool does
not have the definition of several important security prop-
erties, which are essential for the E-Commerce protocols.
In addition, the definition of the built-in fairness and effec-
tiveness predicate does not support complex expressions
that are required for most protocols. The conventional
NuSMV tool uses the branching time temporal logic CTL
(Computation Tree Logic) that based on a branching no-
tion of time. However, the temporal logic does not sup-
port fixed time representation like timestamps that are
required to model nonces, which are used to ensure fresh-
ness of protocol messages. Furthermore, the available
NuSMV model checker has large state-space size when
representing big systems, which leads to the complexity
of the model reading, understanding, and maintaining.

NuSMV had distributed with an Open Source license,
which allows anyone interested to use freely and to par-
ticipate in its development. Therefore, NuSMV model
checker has the ability to add new source code to improve
its old functionalities. An extension is added on the top
of the conventional NuSMV model checker to improve the
pervious discussed limitations. A predicate is a function
that will always evaluate to true or false [8]. New predi-
cates are added on the top of conventional NuSMV model
checker to enhance its capability for the verification and
analysis of E-Commerce and security protocols.

Predicates are proposed to represent both Finite State
Machine (FSM) and its specifications (properties) for the
E-Commerce protocols. A scalable model of predicates
that used to represent the security properties of the E-
Commerce protocols is developed. The new extension
adds new facilities to the NuSMV model checker, which
are scalability, reusability, and simplicity of predicate ab-
straction. In addition, the proposed extension has a trans-
lator that interfaces between the proposed predicates and
the NuSMV tool to transform the predicate form into the
SMV language form.

The next section presents the related works. Section
3 presents the conventional model checker. Section 4

presents extension of the NuSMV model checker. Section
5 presents the scalable model of E-Commerce protocols.
Section 6 describes how the conventional NuSMV tool
used to analyze E-Commerce protocols. Finally, Section
7 describes how to analyze E-Commerce protocols using
the extended NuSMV tool.

2 Related Work

Predicate abstraction is a popular form of over-
approximation and forms the basis of a number of auto-
mated abstraction tools [22]. Constructing an exact pred-
icate abstraction for a given set of predicates requires an
exponential number of validity checks to determine the
abstract transition relation. Work in predicate abstrac-
tion has thus focused on constructing a sufficient conser-
vative upper bound and investigating ways to make valid-
ity checks efficient, using satisfiability and binary decision
diagram (BDD)-based techniques [20]. Researchers have
also combined predicate abstraction model with checkers.
Some researchers have extended model checking to over-
come its limitations and/or provide new functionalities to
model checker.

Chu and Brockmeyer present a new approach for online
predicate detection in distributed systems [6]. This ap-
proach divides an on-going distributed computation into
a series of partial computations and encodes them into
NuSMV models once they are observed. NuSMV is in-
voked to check these models and reports the satisfiability
of the predicate. This approach is efficient and scalable
since predicate detection is based on fast symbolic model
checking and is performed while the computation is ex-
ecuting. Experiment results show that it is suitable for
online monitoring and scales well.

Another work, made by Ray and Sumners [20], presents
a procedure for proving invariants of computing systems
that uses a combination of theorem proving and model
checking. Their procedure automates invariant proofs
while imposing no restriction on the expressiveness of the
language used to define systems and their properties. The
procedure includes lightweight theorem proving to gen-
erate a predicate abstraction, which they then explore
through model checking.

Bryant and Rajamani [4] present automatic techniques
for formally verifying hardware and software by creating
Boolean abstractions of the underlying unbounded sys-
tem state variables. They use two verification tolls that
support predicate abstraction, in which the state of the
system is characterized by a set of Boolean predicates,
describing properties and relations among the state vari-
ables, yielding a Boolean abstraction of the underlying
system.

In addition, Visser and his colleagues [22] investigate
the use of abstraction techniques to reduce the state-space
of a real-time operating system kernel written in C++.
They show how informal abstraction arguments could be
formalized and improved upon within the framework of
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predicate abstraction, a technique based on abstract inter-
pretation. They introduce some extensions to predicate
abstraction that all allow it to be used within the class-
instance framework of object-oriented languages. They
then demonstrate how these extensions were integrated
into an abstraction tool that performs automated predi-
cate abstraction of Java programs.

Dams and Namjoshi [8] propose a framework, based
on predicate abstraction and model checking, for shape
analysis of programs. Shape analysis is used to collect
information about program stores. Rather than use a
specialized abstract interpretation based on shape graphs,
they instantiate a generic and automated abstraction pro-
cedure with shape predicates from a correctness property.
The correctness property is then checked on the abstrac-
tion with a model-checking tool. To enable this process,
they calculate weakest preconditions for common shape
properties, and present heuristics for accelerating conver-
gence.

Eiter et al. [9] present novel complexity results on an-
swer set checking for non-ground programs under two
methods for representing answer sets and a variety of syn-
tactic restrictions. They consider set-based and bitmap-
based representations, which are popular in implemen-
tations of Answer Set Programming systems. Based on
these results, they also derive new complexity results for
the canonical reasoning tasks over answer sets, under the
assumption that predicate are bounded by some constant.
Their results imply that in such a setting more efficient
implementations than those currently available may be
feasible.

Zheng et al. [24] propose a new requirement capture
and analysis method, which constitutes a smooth, small-
step, incremental and iterative development process cut
in by FORMS, clewed and cored by SUBJECT, PREDI-
CATE and OBJECT logic. When applying this method
they can overcome the incoherence and bounce in the
course of requirement analysis and form requirement stage
to design stage as well.

3 Model-based Checking

Many security problems in protocol analysis can be for-
mulated in terms of the properties of a discrete system.
Therefore, it has long realized that formal methods can
be useful for the analysis of the security of cryptographic
protocols. There are several different techniques of formal
methods, which have applied to analyze cryptographic
protocols:

1) Language based methods;

2) Algebra based methods;

3) Logic based methods;

4) Automata based methods;

5) Model based methods [10].

Model-based methods are software tools that incorpo-
rate a protocol state-transition model [10]. While the
abstract model includes the usual state variable for the
intruder’s set of known items, the search algorithms ex-
pressed recursively use a state representation with no ex-
plicit mention of the known set [3]. These systems at-
tempt to locate protocol security flaws by an exhaustive
search of the states space. In addition, it has an equation-
solving facility for terms using encryption and other op-
erators used in authentication protocols. It models pro-
tocol participants as communicating state machines with
an intruder who can intercept participants’ messages to
each other and destroy, modify, or pass messages through
without modification.

Model checking is the process of exploring a finite
state space for determining whether a property holds [5].
Model checking result is either a claim that the prop-
erty/specification is true or else a counterexample showing
that the property is false [16]. A temporal logic defines
specifications/properties. Generally, the temporal logic
that has used is either CTL or Linear Temporal Logic
(LTL). One of the most successful symbolic model check-
ers is the branching time model checker SMV, which was
a BDD-based model checker, developed at school of com-
puter science of CMU [16]. SMV is a tool for symbolic
model checking of finite state systems against specifica-
tions written in a temporal logic. SMV supports both
deterministic and nondeterministic models, and provides
for modular system descriptions. SMV contains Boolean,
scalar, and fixed array data types.

NuSMV is a symbolic model checker originated from
the reengineering, reimplementation and extension of
SMV [7]. The additional features contained in NuSMV
include a textual interaction shell and graphical interface,
extended model partitioning techniques, and facilities for
LTL model checking [16]. NuSMV allows for the anal-
ysis of specifications expressed in CTL, LTL, and Prop-
erty Specification Language (PSL) [7]. NuSMV had dis-
tributed with an Open Source license, which allows any-
one interested to use freely and to participate in its de-
velopment [7].

Figure 1 illustrates NuSMV system taking as input
a FSM and a property ϕ expressed in temporal logic
and outputs true if the finite state system satisfies ϕ or
false otherwise [23]. If the outcome is false, NuSMV out-
puts a counterexample, which allows users to understand
why the finite state system does not satisfy the property.
NuSMV model checker simulates all possible behaviors
of the system model need to analyze, in order to verify
whether a requirement (property) is satisfied.

In most systems like payment systems, protocols used
to improve security and protect against frauds. The
NuSMV model checker is used to verify the E-Commerce
protocols, like NetBill, Fair Exchange, and Needham-
Schroeder protocols. E-Commerce protocols have to own
one or more of the security properties like safety, alive-
ness, authentication, integrity. Unfortunately, the avail-
able NuSMV tool does not have the definition of these
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Figure 1: Conventional NuSMV model checking software

security properties, which are important for E-Commerce
protocols. In addition, the NuSMV tool does not sup-
port using complex expressions for the built-in fairness
and effectiveness predicates.

The conventional NuSMV tool uses the branching time
temporal logic CTL that based on a branching notion of
time. However, the temporal logic does not support fixed
time representation like timestamps that is required to
model nonce, which used to ensure freshness of proto-
col messages. Furthermore, the available NuSMV model
checker has large state-space size when representing big
systems, which leads to the complexity of the model read-
ing, understanding, and maintaining.

4 Predicate-based Extension to

NuSMV Model Checker

The NuSMV has simplified software architecture because
of its different components and functionality have been
isolated and separated into modules, and it provides in-
terfaces between modules. This should reduce the effort
needed to modify and extend NuSMV. Because it is open
source and has a very clean architecture, it was very easy
to implement any algorithms on top of it. NuSMV model
checker has the ability to add new functionalities to im-
prove its old functionalities. The NuSMV is extended to
improve the discussed limitations above by developing two
layers on the top of the tool. The first layer contains new
predicates that represent both FSM and specifications of
the analyzed protocols. The second layer is the trans-
formation layer that transforms the protocols written in
predicates form into the SMV language form. Fixed pred-
icates are added to represent the security properties to be
used in the analysis and verification of the E-Commerce
protocols.

Figure 2 illustrates the two proposed layers that ex-
tending the NuSMV tool. These layers has been devel-
oped using a macro (preprocessor) language on the top
of the SMV language. The macro language is the GNU
M4 language that is an implementation of the traditional
UNIX macro processor. GNU M4 was originally written
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Figure 2: Layout of the verification work flow on the ex-
tended NuSMV model checker

by Rene’ Seindal, with subsequent changes by Franc, Ois
Pinard and other volunteers on the Internet [24]. The
M4 preprocessor language is used to build predicates syn-
tax for representing both the FSMs and its specifications
(properties) of the modelled protocols.

In addition, in the second layer, the M4 macro language
is used to build evaluations and transformations of the
new predicates form into SMV language form.

The new predicates at the first layer are divided into
two types of predicates that are used to represent proto-
cols in the proposed extended model checker. The first
type of predicates used to represent the FSMs for the
verified protocols. While, the second type of predicates
represent the properties of protocols, like safety, alive-
ness, freshness, authentication, integrity, confidentiality,
and separation. The predicates of protocol’s properties
are categorized as two categories. The first category con-
tains predicates that represent the essential properties of
protocols like safety and freshness. While, the second
category contains predicates to represent the advanced
protocol’s properties.

The predicates describe each FSM as a list States,
Events, and Transitions. A State is a predicate that eval-
uates to true when the State is the current state. An
Event is a predicate represents the activity done when
the predicate evaluates to true. A Transition is a list of
next states provides the new current state when a tran-
sition made after some predicates evaluate to true. Each
FSM process is defined within a SMV Module using two
proposed predicates. The first predicate defines variables
using the following form:

var(VariableName, Data type)

Where Data type can be Boolean, integer range (i.e.
From..To), or atomic set of values enclosed in {}. Each
module contains variable declarations, using the previous
form, to determine its state space. Each variable has an



International Journal of Network Security, Vol.16, No.2, PP.90-101, Mar. 2014 94

initial state, which defined with the following predicate:

initialize(VariableName, Initial value)

Where Initial value can be value of any type related
Data type used in the variable declaration. Therefore,
the transition relation of the FSM can be described using
states and events (states and events are predicates) as
described on the following form:

State & Event → new State

Besides predicates that represent FSM, the extended
NuSMV contains predicates to represent specifications of
FSM. These specifications (properties) are Safety, Alive-
ness, Freshness, Authentication, Integrity, Confidential-
ity, and Separation. The Safety property means that
nothing bad ever happens, e.g. never two processes in
critical section at the same time. In other words, only one
process is in its critical section at anytime (or no dead-
lock). The Safety property has the form AG¬(C1 ∧ C2),
which means for all states, any two processes P1 and P2

must not have the current state State1 at the same time.
Safety is built with the Safety predicate that has the
following form:

Safety(P1.CurrentState(State1), P2.CurrentState(State1))

CurrentState is another predicate to check the current
state of variable. The following fragment gives the M4
macro definitions that could form part of the extended
NuSMV library for the transformation of Safety pred-
icate. It defines the commented macros “Safety” and
“CurrentState” for translating the predicate form to the
SMV form.

define(’Safety’, ’SPEC AG !(’$1’ & ’$2’)’)

define(’CurrentState’, ’ifelse($♯, 1, CurrentState1($@),

CurrentState2($@))’) define(’CurrentState1’, ’state = $1’)

define(’CurrentState2’, ’$1 = $2’)

When calling the safety predicate through the extended
NuSMV, it will process this code and should generate the
corresponding SMV form:

→ Safety(P1.CurrentState(State1)

& P2.CurrentState(State1))

SPEC AG!(P1.CurrentState1(state1)
& P2.CurrentState1(state1))

SPEC AG!(P1.state = state1
& P2.state = state1)

The Aliveness property means something desirable will
eventually happen, e.g. whenever a process takes control,
it will always return it. In other words, whenever any
process requests to enter its critical section, it will even-
tually be permitted to do so. The Aliveness property has

the form AG(T1 → AFC1), which means for all states of
process Pi, if Pi starts transition in the state State1, it
eventually ends transition with the state State2. Alive-
ness is built using the Aliveness predicate that has the
following form:

Aliveness(P1.CurrentState(State1),

P1.CurrentState(State2))

The following fragment gives the M4 macro definitions
that could form part of the extended NuSMV library for
the transformation of Aliveness predicate. It defines a
commented macro ’Aliveness’ for translating the predi-
cate form to the SMV form:

define(‘Aliveness′, ‘SPEC AG(‘$1′

→ AF ‘$2′)′)

When calling the Aliveness predicate through the ex-
tended NuSMV, it will process this code and should gen-
erate the corresponding SMV form:

→ Aliveness(P1.CurrentState(State1),

P1.CurrentState(State2))

SPEC AG(P1.CurrentState1(state1)
→ AFP1.CurrentState1(state2))

SPEC AG(P1.state = state1

→ AFP1.state = state2)

The Freshness property means representation of the
time interval within which the corresponding component
considered valid. The freshness is passed in the messages
in the form of timestamp for that message. Timestamps
are numbers marking a specific instance of time. There-
fore, freshness means whenever sender sends a message in
t1 time it must be received by receiver at t2 time, where
t1 and t2 are time units related to transition states of the
FSM, and t1 < t2 by a specific period of time. The Fresh-
ness property has the form AG(AFmsgi(t1) < msgi(t2)),
which means if the process P1 sends the message msg1 at
time t1 then eventually the process P2 receives the mes-
sage msg1 at time t2, where t1 < t2. This due to that
(t1 + Period = t2), where Period is a fixed time assumed
as a twice state transition at ideal cases. Each time unit
is mapped with one state transition. Freshness is built
with the Freshness predicate that has the following form:

Freshness(P1.msg1Sendtime), P2.msg1RecevT ime

The following fragment gives the M4 macro definitions
that could form part of the extended NuSMV library for
the transformation of Freshness predicate. It defines a
commented macro “Freshness” for translating the predi-
cate form to the SMV form:

define(‘Freshness′,

‘SPECAG(AF ((‘$1′ + Period) = ‘$2′))′),
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where Period is a fixed period assumed to represent the
occupied time between sending and receiving message
msg1 at ideal cases. When calling the Freshness predi-
cate through the extended NuSMV, it will process this
code and should generate the corresponding SMV form:

Freshness(P1.msg1Sendtime, P2.msg1RecevT ime)
SPEC AG ( AF ((P1.msg1Sendtime + Period)

= P2.msg1RecevT ime))

The Authentication property means the protocol par-
ties prove to each other their identities. In other words,
when an entity finishes its part of the protocol, the
other entity must have taken part in the protocol exe-
cution. Therefore, if an entity X ends (starts) n pro-
tocol executions with Y as responder (initiator), then
in the past the entity Y must have started (ended) at
least n protocol executions with X as initiator (respon-
der). The property asserts that Y must prove its iden-
tity to X . In the case of mutual authentication pro-
tocol, there exists a similar property for representing
X that must prove its identity to Y . A violation of
this property means that an entity ends a session that
the other entity has not started, i.e., the dishonest en-
tity must have impersonated an entity. The Authenti-
cation property has the form AG(X.begin(init, Y ) >=
Y.end(resp, X)), which means if process P1 begins
(ends) protocol executions with process P2 as initia-
tor (responder) then process P2 ends (begins) proto-
col executions with process P1 as responder (initia-
tor). The counters BeginInitWithP2, EndRespWithP1,
BeginInitWithP1, and EndRespWithP2 are used to
count protocol executions by processes P1 and P2. Au-
thentication is built with the Authentication predicate
that has the following form to authenticate both P1 and
P2:

Authentication(P1.BeginInitWithP2, P2.EndRespWithP1)

Authentication(P2.BeginInitWithP1, P1.EndRespWithP2))

The following fragment gives the M4 macro definitions
that could form part of the extended NuSMV library for
the transformation of Authentication predicate. It defines
a commented macro “Authentication” for translating the
predicate form to the SMV form:

define(‘Authentication′, ‘SPECAG(′$1′ >= ‘$2′)′).

When calling the Authentication predicates (for P1 and
P2) through the extended NuSMV, it will process this
code and should generate the corresponding SMV form:

Authentication(P1.BeginInitWithP2,

P2.EndRespWithP1)

SPEC AG(P1.BeginInitWithP2 ≥ P2.EndRespWithP1))

Authentication(P2.BeginInitWithP1,

P1.EndRespWithP2)

SPECAG(P2.BeginInitWithP1 ≥ P1.EndRespWithP2))

The Integrity property means the assurance that
unauthorized entity has not altered a term, which
means if an entity X receives n times a term from
Y , then in the past the entity Y must have ex-
pressly sent at least n times this term to X . The In-
tegrity property has the form AG(X.send(Y, term) ≥
Y.recv(X, term)), which means for process P1(P2) sends
(receives) message msg1 to (from) P2(P1), the counter
SendMsg1ToP2(RecvMsg1FromP1) is used to count
times a message msg1 sent (received) to (from) P2(P1).
Integrity is built with the Integrity predicate that has the
following form:

Integrity(P1.SendMsg1ToP2, P2.RecvMsg1FromP1)

The following fragment gives the M4 macro definitions
that could form part of the extended NuSMV library for
the transformation of Integrity predicate. It defines a
commented macro ‘Integrity’ for translating the predicate
form to the SMV form:

define(‘Integrity′, ‘SPECAG(‘$1′ = ‘$2′)′).

When calling the Authentication predicate through the
extended NuSMV, it will process this code and should
generate the corresponding SMV form:

Integrity(P1.SendMsg1ToP2, P2.RecvMsg1FromP1)

SPECAG(P1.SendMsg1ToP2 = P2.RecvMsg1FromP1))

The Confidentiality property means that unauthorized
entities must not know a term. In other words, it is
required that the dishonest entity never receives or de-
duces this term. Therefore, entity Y cannot obtain a
term from an entity X more times than this term has
been expressly sent to it. The confidentiality property has
the form AG(X.send(I, term) ≥ I.recv(X, term)), which
means when the dishonest entity I take part to a cer-
tain protocol execution, nobody sends confidential terms
to it, thus X.send(I, term) is always equal to zero.
Consequently, in this case the specification requires that
I.recv(X, term) must be zero. For each process Pi

(i = 1 to n) the counter SendMsgjToIntruder counts
times a message msgj (j = 1 to m) sent to Intruder.
At the other hand, the counter RecvMsgjFromPi counts
times a message msgj received from Pi. Confidentiality
is built with the Confidentiality predicate that has the
following form:

Confidentiality(Pi.SendMsgjToIntruder,
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I.RecvMsgjFromPi).

The following fragment gives the M4 macro definitions
that could form part of the extended NuSMV library for
the transformation of Confidentiality predicate. It defines
a commented macro ‘Confidentiality’ for translating the
predicate form to the SMV form:

define(‘Confidentiality′, ‘SPECAG((′$1′ ≥ ‘$2′)

→ AF ((‘$1′ = 0)&(‘$2′ = 0)))′).

When calling the Confidentiality predicate through the
extended NuSMV, it will process this code and should
generate the corresponding SMV form:

→ Confidentiality(P1.SendMsg1ToIntruder,

I.RecvMsg1FromP1)

SPECAG((P1.SendMsg1ToIntruder

= I.RecvMsg1FromP1) → AF

((P1.SendMsg1ToIntruder = 0)
&(I.RecvMsg1FromP1 = 0)))

The Separation property means the assurance that
identity for actual entity does not been used in any
session of the protocol execution. The Separation
specification has the form AG(X.send(Y, message)! =
Y.recv(X, secret)), which means if an entity X sends a
term to Y , then the entity Y must have not expressly
know the secret included in term that sent from X . There-
fore, for a process P1 who sends message msg1 to P2, the
actual secret term does not be included in the msg1. This
only can happen if the system separates the actual secret
(like PAN) with another dummy secret. The separation
property is built with the Separation predicate that has
the following form:

Separation(P1.Msg1, P1.Msg1.Secret).

The following fragment gives the M4 macro definitions
that could form part of the extended NuSMV library for
the transformation of Separation predicate. It defines a
commented macro ‘Separation’ for translating the predi-
cate form to the SMV form:

define(‘Separation′, ‘SPECAG(!(′$1′)in(′$2′))).

When calling the Separation predicate through the ex-
tended NuSMV, it will process this code and should gen-
erate the corresponding SMV form:

→ Separation(P1.Msg1, P1.Msg1.Secret)

SPEC AG !(P1.Msg1 in P1.Msg1.Secret)
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The predicates of properties in the proposed M4 library
are implemented using the general definition of the secu-
rity specifications. These predicates represent the most
famous security properties of the E-Commerce protocols.
The second layer evaluates predicates then transforms
predicate forms into the SMV language forms. The second
layer is the M4 transformation library that contains the
M4 macro definitions for transforming predicates of both
FSM and its specifications. This library is open source
macro file that everyone can modify and extend at any
time.

5 Proposed Scalable Protocol

E-Commerce protocols have to address standard require-
ments such as confidentiality of information, integrity
of data, participant authentication, and transaction au-
thentication. With E-Commerce continuing to grow, E-
Commerce protocols need to be highly scalable. The ques-
tion is, not only if the E-Commerce protocol system can
scale, but also if it can scale efficiently. E-Commerce
participants need to select cryptography techniques care-
fully to avoid having more costly solutions in order to
scale adequately. A model for applying scalability to E-
Commerce protocol is presented, as shown in Figure 3.
This model is a multi-layer model that provides different
scales of E-Commerce protocol. These scales are imple-
mented using E-commerce protocol definitions with its
security properties. Each scale of E-Commerce proto-
col presents a different situation for using E-Commerce
protocol, which provides different version of E-Commerce
protocol. These protocol versions/situations define all se-
curity requirements of E-Commerce protocol on different
layers.

Figure 3 illustrates the different scales of E-Commerce
protocol. The first scale of E-Commerce protocol defines
E-Commerce protocol as a key distribution protocol. The
second scale adds to the previous scale the envelope fea-
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tures to the E-Commerce protocol. The third scale adds
to the second scale some authentication to E-Commerce
protocol (party authentication). The fourth scale adds
to the third scale full authentication of the transaction
by providing more digital signatures and envelopes (like
SET protocol).

Finally, the fifth scale adds the separation property to
the fourth scale (like 3-D Secure protocol).

These different scales of E-Commerce protocol provide
different levels of E-Commerce protocol implementations.
These different implementations have different security re-
quirements. Security requirements vary from scale to the
other according to the required cryptography features in
each scale associated with different situation. Scales of
E-Commerce protocol advanced from low to high secu-
rity. These gradients of security requirements are used in
different situations to provide scalability of E-Commerce
protocol. Each scale provides a version of E-Commerce
protocol to present different E-Commerce protocols from
simple (Key Distribution protocol) to complicated proto-
col (3-D Secure protocol). This will provide in real en-
vironment different versions with different security prop-
erties, which leads to customization of the cryptographic
development.

The different security properties of these scales are im-
plemented using the proposed predicates. The proposed
model provides a set of predicates that are categorized
as many categories to present these scales. These cat-
egories of predicates are mapped to security properties
of E-Commerce protocols. One or more of these predi-
cate categories can be used to implement the desired E-
Commerce protocol. The proposed extension of model
checker can test all of these predicate categories to verify
the modelled E-Commerce protocol.

Predicates are used to implement the proposed scales
of E-Commerce protocols in the extended NuSMV. In ad-
dition, the extended NuSMV verifies properties of those
scales, which are authentication, integrity, confidential-
ity, and separation. The extended NuSMV verifies these
properties and provides its truth or falsity. Finally, the
extended NuSMV proves these scales of E-Commerce pro-
tocol against its expected properties.

5.1 First Scale of E-Commerce Protocol

The first scale of E-Commerce protocol is provided as a
key distribution protocol. Key distribution features are
authentication and secrecy of key. This scale appears if
both protocol parties need to exchange their keys only
to authenticate themselves. Therefore, this scale of E-
Commerce protocol can work as a separate edition of E-
Commerce protocol to exchange keys between any two
parties. Therefore, the first scale of E-Commerce pro-
tocol ensures authentication and integrity of information
(included key as part of signed messages) sent between
E-Commerce participants. However, this scale does not
provide the other security properties, like authentication
and secrecy of information, whereas the secrecy of key

provided. This due to simplicity of the E-Commerce scale
that is assumed in this situation. To provide other secu-
rity requirement another scale of E-Commerce protocol
must be built.

5.2 Second Scale of E-Commerce Proto-

col

This scale applies “Digital Envelope” encryption on the
messages of the E-Commerce protocol. Therefore, sec-
ond scale provides secrecy of secret information or secret
keys using. The digital envelope ensures confidentiality
that is an important security feature. The second scale of
E-Commerce protocol adds to the first scale (key distri-
bution scale) an extra envelope security feature. There-
fore, this scale provides the security properties: secrecy,
integrity, and authentication of keys. To provide other
security features, another scale of E-Commerce protocol
have to be built.

5.3 Third Scale of E-Commerce Protocol

The third scale of E-Commerce protocol uses the extra
encapsulation with signature operator. Therefore, it pro-
vides extra authentication feature for the exchanged data.
It adds an authentication to the protocol transactions.
Authentication is ensured through validating some re-
quired secure data that are sent between protocol par-
ticipants. Beside authentication, the third scale provides
digital signature, digital envelope, and key exchange (via
digital certificate). Therefore, the third scale provides one
more security feature to the second scale. The third scale
can work as a new version of E-Commerce protocol using
the extra encapsulation cryptography operator that is ap-
plied to some messages of protocol. This scale provides
the key distribution features, Envelope feature, and some
authentication feature to the transaction.

5.4 Fourth Scale of E-Commerce Proto-

col

The fourth scale uses the dual signature cryptography op-
erator that used in the typical SET protocol. Dual signa-
ture is an important innovation introduced in SET. The
purpose of the dual signature is to link two messages that
intended for two different recipients. However, the two
messages must be linked in a way that can be used to
resolve disputes if necessary. The fourth scale uses the
extra encapsulation operator (EncX) in conjunction with
the dual signature, to ensure full confidentiality and au-
thentication of the transaction. This conjunction can au-
thenticate transaction using the integrity of information
sent in the transaction. Therefore, the fourth scale of SET
protocol provides one more security feature to the third
scale. This provides full authentication of the transaction
by which E-Commerce protocol provides non-repudiation
of transactions. Therefore, this scale works like the SET
protocol.
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5.5 Fifth Scale of E-Commerce Protocol

The fifth scale uses the security features previously pre-
sented in the fourth scale of E-Commerce protocol (digital
signature, digital envelope, extra encapsulation, and dual
signature). The fifth scale adds separation property to
security features of the fourth scale. Therefore, it moves
the E-Commerce protocol from the SET protocol to be
close to the 3-D Secure protocol.

6 Analysis of E-Commerce Pro-

tocols Using the Conventional

NuSMV

E-Commerce protocols depend on cryptographic meth-
ods to ensure security properties for E-Commerce trans-
actions. The NuSMV model checker has been very useful
for the analysis of communication and cryptographic pro-
tocols. The conventional NuSMV tool is used to analyze
and verify three E-Commerce protocols. These protocols
are NetBill, Fair Exchange, and Needham-Schroeder pro-
tocols. Although, it successfully verifies the NetBill and
Fair-Exchange protocols using the fairness property im-
plemented in the tool, it requires to add complex expres-
sions for the fairness property that not allowed by the
available tool.

The conventional NuSMV tool fails to verify the Fair
Exchange protocol and the Needham-Schroeder protocol
because they need security properties. The conventional
tool does not include the security properties like safety,
aliveness, authentication, integrity. These properties are
essential properties for most E-Commerce protocols to
verify. The conventional NuSMV success to analysis and
verify these protocols because they require simple spec-
ifications. Next, the Needham-Schroeder (NS) protocol
is analyzed. NS has complicated structure and requires
advanced specifications, as described on the following sec-
tion.

The NS public key protocol has used for communica-
tion between parties that trust each other [15]. The NS
Public Key Protocol serves to exchange nonces between
an initiator A and a responder B through the trusted third
party server S using public keys for mutual authentica-
tion, i.e. both A and B want to be assured of the identity
of the other. The full NS protocol consists of seven steps,
four of which are devoted to distributing public keys [19].
The full protocol is as follows:

A → S : A, B

S → A : {Kb, B}Ks

A → B : {Na, A}Kb

B → S : B, A

S → B : {Ka, A}Ks

B → A : {Na, Nb}Ka

A → B : {Nb}Kb.

A reduced version of the protocol is described by the
following three steps:

A → B : {Na, A}Kb

B → A : {Na, Nb}Ka

A → B : {Nb}Kb.

To initiate the NS protocol, initiator A generates a
nonce Na, encrypts it with his own ID under responder
B’s public key Kb and sends it to B. Then B knows
Na by decrypting the message, generates a nonce Nb, and
encrypts Nb as well as Na under A’s public key Ka. When
A receives the second message, A knows that B got the
initial message by comparing the nonce Na in these two
messages. After that A sends the last message to B, in
the same way, B authenticates A [18].

The NS protocol, in the conventional NuSMV tool, is
modelled as illustrated in Figure 4. The client Alice (A)
is the initiator and the client Bob (B) is the responder of
the NS system, while the Intruder (I) is the attacker of
the NS system, which have a full control of the transmis-
sion between A and B. Therefore, the input of A and B

comes only from I, and the output of A and B passes to I,
i.e. the principals are not interacting directly with each
other’s but indirectly through the intruder module. In
this way, the intruder can overhear, delete, or store each
message and generate new messages by using his knowl-
edge of overheard messages.

Client

(A)

Intruder

(I)

Client

(B)

Initiator Responder

Figure 4: Principals of NS protocol with intruder

The NS protocol depends on nonce included in mes-
sages that are exchanged between protocol’s initiator and
responder. The nonce used in protocol messages to verify
its freshness. Freshness represented by a unique value,
which are an atomic number. The conventional NuSMV
tool uses CTL that based on a branching notion of time.
It refers to the fact that at each moment there may be
several different possible futures. However, the temporal
logic does not support using fixed time representation like
timestamps that is required to model nonce, which used
to ensure freshness of protocol messages. Therefore, the
conventional NuSMV tool fails to represent freshness of
the NS protocol and then it fails to analyze it.

In addition, the NS public-key protocol needs security
properties to verify, which are safety, aliveness, freshness,
authentication, confidentiality, and integrity. The con-
ventional NuSMV tool does not contain definitions for
these properties as built-in predicates. The FSM model
for the NS public key protocol is implemented. The proto-
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col simulation in the conventional NuSMV tool stops run-
ning after 16 states. Therefore, the conventional NuSMV
successes to analyze the FSM model for the NS protocol.
However, it fails the verify specifications of the NS pro-
tocol that are very important to validate correctness and
security of the protocol. Specifications of the NS proto-
col can be built as CTL expressions that may differ from
one protocol to the others. Hence, fixed predicates are re-
quired to add into the conventional NuSMV, to represent
the security properties that can be used in the verification
of E-Commerce protocols.

7 Analysis of E-Commerce Pro-

tocols Using the Extended

NuSMV

The conventional NuSMV model checker is extend by
adding two layers on the top the NuSMV. The first layer
contains predicates to build FSMs models and define se-
curity properties for E-Commerce protocols. These pred-
icates represent the most important security properties
for E-Commerce protocols, like Safety, Aliveness, Fresh-
ness, Authentication, Confidentiality, Integrity, and Sep-
aration. These properties are categorized into two cate-
gories. The first category contains the correctness prop-
erties, which are essential properties for all protocols, e.g.
Safety, Aliveness, and Freshness. The second category
contains Authentication, Confidentiality, Integrity, and
Separation properties. These properties are required for
complicated protocols. The second layer contains trans-
former from the predicate form into the SMV language
form. The extended model checker is used with the first
category of predicates to verify the Kerberos protocols.
Then, the second category is used to verify the 3-D SET
and 3-D Secure protocols.

The conventional NuSMV success to verify the sim-
ple cases for E-Commerce protocols but fail to success
the complicated cased of E-Commerce protocols. There-
fore, the NuSMV is extended with a set of predicates to
analysis and verify the complicated E-Commerce proto-
cols. The extended NuSMV success on the verification of
Kerberos protocol using the first category of predicates
(Safety, Aliveness, and Freshness). In addition, it success
to verify the 3-D SET protocol with second category of
predicates (Authentication, Confidentiality, Integrity, and
Separation) and states that the 3-D SET does not contain
the separation property. Finally, the extended NuSMV is
used to verify the 3-D Secure protocol. Participants of the
3-D Secure protocol are implemented: Cardholder, Mer-
chant, Acquirer Payment Gateway, Issuer Access Control,
Visa Directory, and Intruder. Intruder has a full control
of the transmission among protocol parties: Cardholder,
Merchant, and Issuer Access Control.

The extended NuSMV model checker simulates the 3-
D secure protocol execution that stopped after running
57 states. These states simulate the ideal running process

of the FSM that represents the 3-D secure protocol. The
implemented security properties for the FSM of the 3-
D secure protocol are safety, Aliveness, authentication,
integrity, confidentiality, and separation. The extended
NuSMV verifies those properties and inform that they are
valid for the whole simulation running of the 3-D secure
protocol (57 states).

The predicates Safety, Aliveness, Authentication, Con-
fidentiality, Integrity, and Separation are represented us-
ing the general predicates represented above. The ex-
tended NuSMV evaluates these predicates and informs
that it has the value TRUE, as shown in Figure 5. This
should verify the security properties for the 3-D secure
protocol. Specially, the Separation property is verified -
the special property of the 3-D secure protocol. There-
fore, the extended NuSMV success to analysis and verify
the complicated E-Commerce protocols.

8 Conclusions

Our conclusion is the presenting of the extended model
checker, which overcomes limitations of the conventional
NuSMV model checking when verifying E-Commerce pro-
tocols. The extended NuSMV uses the predicates to rep-
resent FSMs and its properties. In addition, we pro-
vide a scalable model to present security properties of
E-Commerce protocols. This new model provides multi
versions of E-Commerce protocols suitable to be used in
different situations. This scalable model overcomes the
complexity implementation problem of E-Commerce pro-
tocols because scales have different structures from simple
to complicated cryptographic operations. In addition, it
overcomes the delay and slow of using complicated crypto-
graphic operations in the E-Commerce protocol that only
used on the last scales. Our scalable model with the pred-
icate abstraction model provides the extended NuSMV
to reuse these new predicates in the analysis and verifica-
tion of other protocols/systems. We add a transformation
layer to the conventional model checker to transform from
the predicate form to the SMV language form. Our trans-
former evaluates predicates syntax before transformation.
Finally, our extended predicate model checker is used to
verify security properties of E-Commerce protocol.
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