
International Journal of Network Security, Vol.17, No.4, PP.463-470, July 2015 463

An Efficient Batch Verifying Scheme for
Detecting Illegal Signatures

Yanli Ren1, Shuozhong Wang1, Xinpeng Zhang1, Min-Shiang Hwang2,3

(Corresponding author: Min-Shiang Hwang)

School of Communication and Information Engineering, Shanghai University, Shanghai 200072, China1

Department of Computer Science and Information Engineering, Asia University2

No. 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan

(Email: mshwang@asia.edu.tw)

Department of Medical Research, China Medical University Hospital, China Medical University3

No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan

(Received Dec. 25, 2012; revised and accepted May 14 & July 20, 2014)

Abstract

In a batch verifying scheme, multiple RSA digital signa-
tures can be verified simultaneously in just one exponen-
tial operation time. Currently, the verifier could not easily
detect where the signature-verification fault was located
in most schemes, if the batch verification fails. In this arti-
cle, we proposed a new batch verifying multiple RSA dig-
ital signatures scheme based on a cube. The scheme can
detect accurately where the signature-verification fault
is located. Moreover, once the total number of signa-
tures is fixed, the size of exponentiation operations is in-
dependent from the number of illegal signatures in our
scheme. Therefore, our scheme has a better performance
and higher efficiency than the previous ones. Finally, we
described an extend batch verifying scheme under the con-
dition of n-dimension.

Keywords: Batch verifying, digital signature, multiple sig-
natures

1 Introduction

RSA is a well-known public key cryptosystem where each
user has a public key e for encryption (verification) and
a private key d for decryption (signature) [17,18]. It pro-
tects the transaction information over the network [16],
and satisfies the requirement of user authentication and
communication security on networking environments [15].
In a RSA signature scheme, the signer uses the personal
private key d to sign document M and obtains the sig-
nature S = Md, and then the receiver verifies whether
M = Se using the signer’s public key e. If there are t
documents and signatures (Mi, Si)(i = 1, · · · , t), the re-
ceiver then needs to verify these signatures one by one
and fully executes t exponential computations [11]. This
will reduce the computer host’s processing ability and the

efficiency of RSA signature scheme. Therefore, the con-
cept of batch verifying signatures has been introduced to
efficiently improve the performance of verifying multiple
RSA signatures [2, 6, 8, 13,19,20].

Harn proposed a batch verifying multiple RSA signa-
ture scheme [5] in 1998, where multiple signatures could
be verified simultaneously in just one exponential oper-
ation time. Such method is considered to be more ef-
ficient than the previous signature schemes where the
signer must repeatedly verify each signature [3,12]. How-
ever, Hwang et al. showed that the Harn’s scheme could
not resist two kinds of attacks [7, 10]. In addition, the
verifier could not detect where the signature-verification
fault was located if the batch verification fails in Harn’s
scheme. Since the verifier must re-verify each of the signa-
tures and then confirms where the signature-verification
fault is located, it is inefficient to detect the illegal sig-
natures. There are many batch verifying multiple RSA
signature schemes have been proposed [1, 4, 12,21].

Recently, Li et al. proposed a matrix-based solution to
quickly find out where the signature-verification faults are
located without re-verifying each of the signatures [14].
In their scheme, the performance would be at its best
when both numbers of row and column square roots are
equal to the message’s numbers. Let’s assume there are
25 signatures, the scheme is the most efficient one and
the verifier needs to execute 10 exponential computations
when the matrix has 5 rows and 5 columns. If there is one
illegal signature, the verifier needs to execute 10 exponen-
tial computations. If there are two illegal signatures, the
verifier needs to execute 14 exponential computations to
detect the illegal signatures.

In this paper, we present a new batch verifying scheme
which is especially efficient when there are illegal signa-
tures. When the verifier receives t signatures, it generates
a cube of side length n and fills these t signatures in the



International Journal of Network Security, Vol.17, No.4, PP.463-470, July 2015 464

n × n × n cube, where n is the smallest integer which
satisfies n3 ≥ t. Let’s assume there are 25 signatures,
the verifier generates a cube of side length 3 and executes
3 + 3 + 3 = 9 exponential computations since 3 is the
smallest integer which satisfies 33 ≥ 25. Moreover, the
verification time would not increase as the number of the
illegal signatures increases.

The paper is organized as follows: In Section 2, we
review two batch verifying schemes including Harn’s and
Li’s scheme. Then we present the proposed scheme and
compare its performance with that of previous schemes
in Sections 3 and 4, respectively. In Section 5, an ex-
tended batch verification scheme is described. Finally, we
conclude our paper in Section 6.

2 Two Batch Verifying Scheme

We review two batch verifying schemes before presenting
the proposed one.

2.1 Harn’s Scheme

In this section, we first introduce Harn’s batch verifying
scheme [5]. Let’s assume p and q are two prime numbers,
and N = pq. e and d are presented as the signer’s public
key and private key respectively, which satisfies ed ≡ 1
mod ϕ(N), and ϕ(·) is the Euler function. h(·) is a public
one-way hash function.

We suppose Alice sends the messages M0, M1, · · · ,
Mt−1 and signatures S0, S1, · · · , St−1 to Bob, where
Si = h(Mi)

d mod N , (i = 0, 1, · · · , t− 1). Bob can verify
these signatures using Alice’s public key e by the following
equation:

(

t−1∏
i=0

Si)
e ?

=

t−1∏
i=0

h(Mi). (1)

If Equation (1) holds, (S0, S1, · · · , St−1) are valid sig-
natures of M0, M1, · · · , Mt−1, respectively. In Harn’s
scheme, these signatures can be verified simultaneously
in one exponential operation time.

2.2 Li et al.’s Scheme

The scheme was proposed by Li et al. recently [14]. When
the verifier receives the messages (M1, S1), (M2, S2), · · · ,
(Mt, St) from the signer, the verifier will generate an m×n
matrix (where m × n ≥ t) and t random numbers ri,
i = 1, 2, . . . , t, where ri ∈ {1, 2, . . . , t}. He then randomly
fills these t messages into the m × n matrix using the
following equation (see Table 1):

S(m,n) =

{
S(dri/ne, n), if ri mod n = 0
S(dri/ne, ri mod n), otherwise.

(2)

After filling these messages in the m×n matrix, the ver-
ifier could batch verify each of the rows and the columns,

Table 1: An m× n matrix

S(1,1) S(1,2) . . . S(1,n-1) S(1,n)
S(2,1) S(2,2) . . . S(2,n-1) S(2,n)

...
...

...
...

...
S(m-1,1) S(m-1,2) . . . S(m-1,n-1) S(m-1,n)

S(m,1) S(m,2) . . . S(m,n-1) S(m,n)

respectively. The complete batch verifying process is di-
vided into two verifications: row verification and column
verification. The details of row and column verification
are shown as follows.
• Row verification:

First row: (
∏n

i=1 S(1,i))
e ?

=

∏n
i=1 h(M(1,i)) mod N ,

Second row: (
∏n

i=1 S(2,i))
e ?

=

∏n
i=1 h(M(2,i)) mod N ,

...
m-th row: (

∏n
i=1 S(m,i))

e ?
=

∏n
i=1 h(M(m,i)) mod N .

• Column verification:

First column: (
∏m

i=1 S(i,1))
e ?

=

∏m
i=1 h(M(i,1)) mod N ,

Second column: (
∏m

i=1 S(i,2))
e ?

=

∏m
i=1 h(M(i,2)) mod N ,

...
n-th column: (

∏m
i=1 S(i,n))

e ?
=

∏m
i=1 h(M(i,n)) mod N .

If there are some signature-verification faults in the ma-
trix, we could find out where these signature-verification
faults are located by finding the matrix positions of row
and column overlaps.

Table 2: An 5× 5 matrix

S(1,1) S(1,2) S(1,3) S(1,4) S(1,5)
S(2,1) S(2,2) S(2,3) S(2,4) S(2,5)
S(3,1) S(3,2) S(3,3) S(3,4) S(3,5)
S(4,1) S(4,2) S(4,3) S(4,4) S(4,5)
S(5,1) S(5,2) S(5,3) S(5,4) S(5,5)

Suppose Alice sends 25 messages to Bob, then Bob
will generate 25 random numbers and a 5 × 5 matrix
shown as Table 2. After batch verifying each of the rows
and the columns, Bob could easily realize there was a
signature-verification fault occurring and precisely detects
where the signature-verification fault is located. Assume
there was one signature-verification fault in the position
S(3, 3) of matrix, there would occur two verification fails
and these two fails would occur in the third row and the
third column, respectively. According to the verification
fails of the third row and the third column overlaps, the
signature-verification fault could be precisely detected in
the position S(3, 3) of matrix. However, it is possible for
the verifier to execute additional operations if two illegal
signatures occur. As shown in [14], the number of total



International Journal of Network Security, Vol.17, No.4, PP.463-470, July 2015 465

verification is 10 if two signature-verification faults are
occurring on the same row or on the same column, and
the number is 14 if two illegal signatures are occurring on
adjacent diagonal or not occurring on the same row or not
on the same column. Please refer to [14] for more details.

3 The Proposed Scheme

We now present a batch verifying multiple signatures
scheme which is more efficient than the previous ones,
especially when the illegal signature occurs. The details
of our scheme are described as follows.

First, the verifier generates a cube with side length
m when he receives some pairs of message and signa-
ture (M0, S0), (M1, S1), · · · , (Mt−1, St−1) from the signer,
where m is the smallest integer which satisfies m3 ≥ t.

Next, the verifier chooses t random numbers ri, where
ri ∈ {0, 1, · · · ,m3 − 1}, i = 0, 1, · · · , t−1, and fills these t
signatures in the m×m×m cube according to coordinate
figure (x, y, z), where

ri = xm2 + ym + z, and x, y, z ∈ {0, 1, · · · ,m− 1}. (3)

Finally, the verifier could then batch verify each plane
according to the three coordinate axes. The details are
shown as follows.

• x-axis plane:

x = 0: (
∏m−1

i=0

∏m−1
j=0 S(0,i,j))

e ?
=

∏m−1
i=0

∏m−1
j=0 h(M(0,i,j)),

x = 1: (
∏m−1

i=0

∏m−1
j=0 S(1,i,j))

e ?
=

∏m−1
i=0

∏m−1
j=0 h(M(1,i,j)),

...
x = m− 1:

(
∏m−1

i=0

∏m−1
j=0 S(m−1,i,j))

e ?
=

∏m−1
i=0

∏m−1
j=0 h(M(m−1,i,j)).

• y-axis plane:

y = 0: (
∏m−1

i=0

∏m−1
j=0 S(i,0,j))

e ?
=

∏m−1
i=0

∏m−1
j=0 h(M(i,0,j)),

y = 1: (
∏m−1

i=0

∏m−1
j=0 S(i,1,j))

e ?
=

∏m−1
i=0

∏m−1
j=0 h(M(i,1,j)),

...
y = m− 1:

(
∏m−1

i=0

∏m−1
j=0 S(i,m−1,j))

e ?
=

∏m−1
i=0

∏m−1
j=0 h(M(i,m−1,j)).

• z-axis plane:

z = 0: (
∏m−1

i=0

∏m−1
j=0 S(i,j,0))

e ?
=

∏m−1
i=0

∏m−1
j=0 h(M(i,j,0)),

z = 1: (
∏m−1

i=0

∏m−1
j=0 S(i,j,1))

e ?
=

∏m−1
i=0

∏m−1
j=0 h(M(i,j,1)),

...
z = m− 1:

(
∏m−1

i=0

∏m−1
j=0 S(i,j,m−1))

e ?
=

∏m−1
i=0

∏m−1
j=0 h(M(i,j,m−1)).

If there are some signature-verification faults in the
cube, we could find out where these faults are located by
finding the point of intersection of three kinds of plane. As
shown in Figure 1, there is a signature-verification fault

Figure 1: An m×m×m cube

in the position (a, b, c) of the cube if three verifications
fail in the x = a, y = b, and z = c plane, respectively.

We will now give a simple example to show the
correctness of our scheme. Let’s suppose Alice have sent
64 messages to Bob, then Bob will choose 64 random
numbers and generate a 4 × 4 × 4 cube as shown in
Figure 2. If r0 = 22, the pair (M0, S0) would be filling in
the position (1, 1, 2) of the cube since 22 = 1 ·42 +1 ·4+2.
If r1 = 45, the pair (M1, S1) would be filling in the
position (2, 3, 1) of the cube because 45 = 2 ·42 + 3 ·4 + 1.
The rest can be deduced similarly by Equation (2). After
filling 64 signatures in the cube, Bob could then batch
verify three kinds of plane by the method described above.

• x-axis plane:

x = 0: (
∏3

i=0

∏3
j=0 S(0,i,j))

e ?
=

∏3
i=0

∏3
j=0 h(M(0,i,j)),

x = 1: (
∏3

i=0

∏3
j=0 S(1,i,j))

e ?
=

∏3
i=0

∏3
j=0 h(M(1,i,j)),

x = 2: (
∏3

i=0

∏3
j=0 S(2,i,j))

e ?
=

∏3
i=0

∏3
j=0 h(M(2,i,j)),

x = 3: (
∏3

i=0

∏3
j=0 S(3,i,j))

e ?
=

∏3
i=0

∏3
j=0 h(M(3,i,j)).

• y-axis plane:

y = 0: (
∏3

i=0

∏3
j=0 S(i,0,j))

e ?
=

∏3
i=0

∏3
j=0 h(M(i,0,j)),

y = 1: (
∏3

i=0

∏3
j=0 S(i,1,j))

e ?
=

∏3
i=0

∏3
j=0 h(M(i,1,j)),

y = 2: (
∏3

i=0

∏3
j=0 S(i,2,j))

e ?
=

∏3
i=0

∏3
j=0 h(M(i,2,j)),

y = 3: (
∏3

i=0

∏3
j=0 S(i,3,j))

e ?
=

∏3
i=0

∏3
j=0 h(M(i,3,j)).

• z-axis plane:

z = 0: (
∏3

i=0

∏3
j=0 S(i,j,0))

e ?
=

∏3
i=0

∏3
j=0 h(M(i,j,0)),

z = 1: (
∏3

i=0

∏3
j=0 S(i,j,1))

e ?
=

∏3
i=0

∏3
j=0 h(M(i,j,1)),

z = 2: (
∏3

i=0

∏3
j=0 S(i,j,2))

e ?
=

∏3
i=0

∏3
j=0 h(M(i,j,2)),

z = 3: (
∏3

i=0

∏3
j=0 S(i,j,3))

e ?
=

∏3
i=0

∏3
j=0 h(M(i,j,3)).



International Journal of Network Security, Vol.17, No.4, PP.463-470, July 2015 466

Table 3: Experiment results of RSA, Harn, Li, and our schemes

Method Message Size of Row Size of x Size of
(Column) (y, z)-axis exponentiation

RSA [18] 25 — — 25
Harn [5] 25 — — 1

Li [14] 25 5 — 10
Ours 25 — 3 9

Method Message Size of Row Size of x Size of
(Column) (y, z)-axis exponentiation

RSA [18] 100 — — 100
Harn [5] 100 — — 1

Li [14] 100 10 — 20
Ours 100 — 5 15

Method Message Size of Row Size of x Size of
(Column) (y, z)-axis exponentiation

RSA [18] 256 — — 256
Harn [5] 256 — — 1

Li [14] 256 16 — 32
Ours 256 — 7 21

Figure 2: An 4× 4× 4 cube

After batch verifying each plane, Bob is now confirmed
whether the signature-verification fault is occurring or
not. We suppose there was one signature-verification fault
in the position (1, 2, 3) of the cube, so Bob could real-
ize there was a signature-verification fault occurring and
precisely detects where the signature-verification fault is
located. From the method described above, there would
occur three verification that fails in the x = 1, y = 2, and
z = 3 plane, respectively. According to the point of inter-
section of three kinds of plane, the signature-verification
fault could be precisely detected in the position (1, 2, 3)
of the cube.

4 Implementation and Result
Analysis

4.1 Experimental Results

In this section, we implement RSA, Harn’s scheme, Li’s
scheme, and ours, with the experimental results of four
schemes shown in Table 3. From Table 3, we have con-
cluded that Harn’s scheme is better when the batch ver-
ification of multiple signatures have succeeded. However,
it must re-verify all signatures if there are illegal ones as
presented in Section 1. Thus, the performance of Harn’s
scheme is worse than Li’s and ours when illegal signatures
occur. In addition, our scheme needs less exponentiation
operations for the same number of messages. Therefore,
the performance of our scheme is best in most situations.

In Table 3, we compared the sizes of exponentiation
operations for different number of signatures in all four
schemes. In RSA scheme, the verifier needs to verify the
signatures one by one, so the sizes of exponentiation op-
erations are 25, 100, and 256, respectively. As described
in Section 2, the verifier can determine the correctness of
signature by using one exponential operation in Harn’s
scheme. Therefore, we only need to show the size of ex-
ponentiation operations in Li’s and our scheme. In Li’s
scheme, the verifier can obtain 5× 5, 10× 10, and 16× 16
matrixes and executes 5 + 5 = 10, 10 + 10 = 20, and
16 + 16 = 32 exponentiation operations for 25, 100, and
256 signatures since 5, 10 and 16 are the square root of
25, 100, and 256, respectively. In our scheme, the verifier
can generate 3× 3× 3, 5× 5× 5, and 7× 7× 7 cubes and
executes 3 + 3 + 3 = 9, 5 + 5 + 5 = 15, and 7 + 7 + 7 = 21
exponentiation operations since 3, 5, 7 are the smallest
integer which satisfies 33 ≥ 25, 53 ≥ 100, and 73 ≥ 256,



International Journal of Network Security, Vol.17, No.4, PP.463-470, July 2015 467

Table 4: Comparisons for detecting illegal signatures among RSA, Harn, Li, and our schemes

Method Message Size of exponentiation Size of exponentiation
(one illegal signature) (two illegal signatures)

RSA [18] 25 25 25
Harn [5] 25 26 26

Li [14] 25 10 14
Ours 25 9 9

Method Message Size of exponentiation Size of exponentiation
(one illegal signature) (two illegal signatures)

RSA [18] 100 100 100
Harn [5] 100 101 101

Li [14] 100 20 24
Ours 100 15 15

Method Message Size of exponentiation Size of exponentiation
(one illegal signature) (two illegal signatures)

RSA [18] 256 256 256
Harn [5] 256 257 257

Li [14] 256 32 36
Ours 256 21 21

respectively.

4.2 Analysis of Illegal Signature Detec-
tion

In this section, we now present the size of exponentiation
operations in four schemes when illegal signatures occur.
As described in Section 1, the performance of illegal sig-
natures detection is regarded as the position it is located
in. From Table 4, we know that our scheme is better
than Harn’s and Li’s for determining the situation where
illegal signatures are located. Once the total number of
signatures is fixed, the size of exponentiation operations
is independent from the number of illegal signatures in
our scheme.

In Table 4, we compared the sizes of exponentiation
for detecting one and two illegal signatures among RSA,
Harn, Li, and our schemes. In RSA scheme, the ver-
ifier needs to verify the signatures one by one, so the
sizes of exponentiation operations are 25, 100, and 256
respectively. In Harn’s scheme, the verifier must re-verify
each signatures if there are illegal ones, so he needs to
execute 26, 101, and 257 exponentiation operations, re-
spectively. As shown in Section 2.2, in Li’s scheme, one
illegal signature can be detected accurately after batch
verification finished, and the verifier must add 4 expo-
nentiation operations if there are two illegal signatures.
From Table 3, we know that 10, 20, and 32 operations
are needed for 25, 100, and 256 signatures respectively
in Li’s scheme. Thus, the verifier executes 10, 20, and 32
operations when one illegal signature occurs; and 14, 24,
and 36 operations if there are two illegal signatures in Li’s
scheme. In our scheme, the position of illegal ones can be
determined accurately once batch verification is finished

and the size of operations are independent from the num-
ber of signatures. From Table 3, we know that 9, 15, and
21 operations are needed for 25, 100, and 256 signatures
respectively in our scheme. Therefore, the sizes of ex-
ponentiation operations are 9, 15, and 21 in our scheme
whether one or two faults occurred.

5 The Extension of the Scheme

The proposed scheme is based on a cube, and we can ex-
tend it to the condition of n-dimension. First, the ver-
ifier generates an n-dimension object with side length
m when he receives some pairs of message and signa-
ture (M0, S0), (M1, S1), · · · , (Mt−1, St−1) from the signer,
where m is the smallest integer which satisfies mn ≥ t.

Next, the verifier chooses t random numbers ri, where
ri ∈ {0, 1, · · · ,mn − 1}, i = 0, 1, · · · , t − 1, and fills
these t messages in the mn object according to coordinate
figure (an−1, an−2, · · · , a1, a0), where an−1, · · · , a1, a0 ∈
{0, 1, · · · ,m− 1} and

ri = an−1m
n−1 + an−2m

n−2 + · · ·+ a1m + a0.

Finally, the verifier could then batch verify each plane
according to n-dimension coordinate axis. The details are
described as follows.

1) an−1-axis plane:

a. an−1 = 0:

(

m−1∏
an−2=0

· · ·
m−1∏
a0=0

S(0,an−2,··· ,a0))
e

?
=

m−1∏
an−2=0

· · ·
m−1∏
a0=0

h(M(0,an−2,··· ,a0)).



International Journal of Network Security, Vol.17, No.4, PP.463-470, July 2015 468

b. an−1 = 1:

(

m−1∏
an−2=0

· · ·
m−1∏
a0=0

S(1,an−2,··· ,a0))
e

?
=

m−1∏
an−2=0

· · ·
m−1∏
a0=0

h(M(1,an−2,··· ,a0)).

...
...

c. an−1 = m− 1:

(

m−1∏
an−2=0

· · ·
m−1∏
a0=0

S(m−1,an−2,··· ,a0))
e

?
=

m−1∏
an−2=0

· · ·
m−1∏
a0=0

h(M(m−1,an−2,··· ,a0)).

2) an−2-axis plane:

a. an−2 = 0:

(

m−1∏
an−1=0

m−1∏
an−3=0

· · ·
m−1∏
a0=0

S(an−1,0,··· ,a0))
e

?
=

m−1∏
an−1=0

m−1∏
an−3=0

· · ·
m−1∏
a0=0

h(M(an−1,0,··· ,a0)).

b. an−2 = 1:

(

m−1∏
an−1=0

m−1∏
an−3=0

· · ·
m−1∏
a0=0

S(an−1,1,··· ,a0))
e

?
=

m−1∏
an−1=0

m−1∏
an−3=0

· · ·
m−1∏
a0=0

h(M(an−1,1,··· ,a0))

...
...

c. an−2 = m− 1:

(

m−1∏
an−1=0

m−1∏
an−3=0

· · ·
m−1∏
a0=0

S(an−1,m−1,··· ,a0))
e

?
=

m−1∏
an−1=0

m−1∏
an−3=0

· · ·
m−1∏
a0=0

h(M(an−1,m−1,··· ,a0)).

...

3) a0-axis plane:

a. a0 = 0:

(

m−1∏
an−1=0

· · ·
m−1∏
a1=0

S(an−1,··· ,a1,0))
e

?
=

m−1∏
an−1=0

· · ·
m−1∏
a1=0

h(M(an−1,··· ,a1,0)).

b. a0 = 1:

(

m−1∏
an−1=0

· · ·
m−1∏
a1=0

S(an−1,··· ,a1,1))
e

?
=

m−1∏
an−1=0

· · ·
m−1∏
a1=0

h(M(an−1,··· ,a1,1)).

...
...

c. a0 = m− 1:

(

m−1∏
an−1=0

· · ·
m−1∏
a1=0

S(an−1,··· ,a1,m−1))
e

?
=

m−1∏
an−1=0

· · ·
m−1∏
a1=0

h(M(an−1,··· ,a1,m−1)).

Therefore, the total number of exponentiation oper-
ations is mn in the extended batch verification scheme.
If there are some signature-verification faults in the n-
dimension object, we could find out where these faults
are located by finding the point of intersection of n kinds
of plane. For example, there is a signature-verification
fault in the position (0, 1, · · · ,m− 1) of the n-dimension
object, if n verifications failed in the an−1 = 0 plane,
an−2 = 1 plane, · · · and a0 = m− 1 plane, respectively.

6 Conclusions

We presented a new batch verification multiple RSA sig-
natures scheme which fills the signatures into a cube. It
can detect accurately where the illegal signatures are lo-
cated without additional re-verify operations. Moreover,
the verification time would not increase as the number of
the illegal signatures increases in one batch verification.
Experiment shows our scheme is more efficient than the
previous schemes, especially when the number of the sig-
natures is very large. We then extended this scheme to
the condition of n-dimension.

Acknowledgements

The work described in this paper was supported by
the Natural Science Foundation of China (Grant No.
61202367, 61472235), Natural Science Foundation of
Shanghai (Grant No. 12ZR1443700), and the Innovation
Program of Shanghai Municipal Education Commission
(Grant No. 14YZ020).

References

[1] F. Bao, C. C. Lee, M. S. Hwang, “Cryptanalysis and
improvement on batch verifying multiple RSA digital
signatures,” Applied Mathematics and Computation,
vol. 172, no. 2, pp. 1195-1200, 2006.



International Journal of Network Security, Vol.17, No.4, PP.463-470, July 2015 469

[2] T. Cao, D. Lin, and R. Xue, “Security analysis of
some batch verifying signatures from pairings,” In-
ternational Journal of Network Security, vol. 3, no.
2, pp. 138-143, 2006.

[3] S. W. Changchien, M. S. Hwang, “A batch verifying
and detecting multiple RSA digital signatures,” In-
ternational Journal of Computational and Numerical
Analysis and Applications, vol. 2, no. 3, pp. 303-307,
Oct. 2002.

[4] T. Y. Chang, M. S. Hwang, W. P. Yang, and K.
C. Tsou, “A modified Ohta-Okamoto digital signa-
ture for batch verification and its multi-signature
version,” International Journal of Engineering and
Industries, vol. 3, no. 3, pp. 75-83, Sep. 2012.

[5] L. Harn, “Batch verifying multiple RSA digital signa-
tures,” Electronics Letters, vol. 34, no. 12, pp. 1219-
1220, 1998.

[6] M. S. Hwang, K. F. Hwang, I. C. Lin, “Cryptanal-
ysis of the batch verifying multiple RSA digital sig-
natures,” Informatica, vol. 11, no. 1, pp. 1-4, Jan.
2000.

[7] M. S. Hwang, I. C. Lin, and K. F. Hwang, “Crypt-
analysis of the batch verifying multiple RSA digital
signatures,” Informatica, vol. 11, no. 1, pp. 15-19,
2000.

[8] M. S. Hwang and C. C. Lee, “Research issues and
challenges for multiple digital signatures,” Interna-
tional Journal of Network Security, vol. 1, no. 1, pp.
1-7, July 2005.

[9] M. S. Hwang, C. C. Lee, Y. C. Lai, “Traceability
on RSA-based partially signature with low compu-
tation,” Applied Mathematics and Computation, vol.
145, no. 2-3, pp. 465-468, Dec. 2003.

[10] M. S. Hwang, C. C. Lee, E. J. L. Lu, “Cryptanalysis
of the batch verifying multiple DSA-type digital sig-
natures,” Pakistan Journal of Applied Sciences, vol.
1, no. 3, pp. 287-288, July 2001.

[11] M. S. Hwang, E. J. L. Lu, I. C. Lin, “Practical (t,
n) threshold proxy signature scheme based on the
RSA cryptosystem,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 15, no. 6, pp. 1552-
1560, Nov./Dec. 2003.

[12] S. J. Hwang, M. S. Hwang, and S. F. Tzeng, “A
new digital multisignature scheme with distinguished
signing authorities,” Journal of Information Science
and Engineering, vol. 19, no. 5, pp. 881-887, Sep.
2003.

[13] K. Kim, I. Yie, S. Lim, and D. Nyang, “Batch verifi-
cation and finding invalid signatures in a group signa-
ture scheme,” International Journal of Network Se-
curity, vol. 13, no. 2, pp. 61-70, 2011.

[14] C. T. Li, M. S. Hwang, “A batch verifying and de-
tecting the illegal signatures,” International Journal
of Innovative Computing, Information and Control,
vol. 6, no. 12, pp. 5311-5320, 2010.

[15] C. T. Li, M. S. Hwang, and Y. P. Chu, “An effi-
cient sensor-to-sensor authenticated path-key estab-
lishment scheme for secure communications in wire-

less sensor networks,” International Journal of Inno-
vative Computing, Information and Control, vol. 5,
no. 8, pp. 2107-2124, 2009.

[16] C. T. Li, M. S. Hwang, and C. Y. Liu, “An electronic
voting protocol with deniable authentication for mo-
bile ad hoc networks,” Computer Communications,
vol. 31, no. 10, pp. 2534-2540, 2008.

[17] N. Ojha and S. Padhye, “Cryptanalysis of multi
prime RSA with secret key greater than public key,”
International Journal of Network Security, vol. 16,
no. 1, pp. 53-57, 2014.

[18] R. L. Rivest, A. Shamir, and L. Adleman, “A method
for obtaining digital signatures and public key cryp-
tosystems,” Communications of the ACM, vol. 21,
no. 2, pp. 120-126, 1978.

[19] M. Stanek, “Attacking LCCC batch verification of
RSA signatures,” International Journal of Network
Security, vol. 6, no. 2, pp. 238-240, 2008.

[20] S. F. Tzeng, C. C. Lee, and M. S. Hwang, “A batch
verification for multiple proxy signature,” Parallel
Processing Letters, vol. 21, no. 1, pp. 77-84, 2011.

[21] J. Zhang, M. Xu, and L. Liu, “On the security of
a secure batch verification with group testing for
VANET,” International Journal of Network Security,
vol. 16, no. 4, pp. 313-320, 2014.

Yanli Ren is an associate professor in School of Com-
munication and Information Engineering at Shanghai
University, China. She was awarded a MS degree in
applied mathematics in 2005 from Shaanxi Normal
University, China, and a Ph.D. degree in computer
science and technology in 2009 from Shanghai Jiao
Tong University, China. Her research interests include
applied cryptography, secure outsourcing computing, and
network security.

Shuozhong Wang received BS degree in 1966 from
Peking University, P.R. China, and Ph.D. degree in 1982
from University of Birmingham, England. He was with
Institute of Acoustics, Chinese Academy of Sciences,
from 1983 to 1985 as a research fellow. He joined
Shanghai University of Technology in October 1985 as an
associate professor. He is now a professor of the School of
Communication and Information Engineering, Shanghai
University. Professor Wang was a visiting associate
scientist at Department of Electrical Engineering and
Computer Science, University of Michigan, USA, from
March 1993 to August 1994. His research interests
include acoustics, image processing, audio processing,
and information security.

Xinpeng Zhang received the B.S. degree in computa-
tional mathematics from Jilin University, China, in 1995,
and the M.E. and Ph.D. degrees in communication and
information system from Shanghai University, China, in
2001 and 2004, respectively. Since 2004, he has been
with the faculty of the School of Communication and
Information Engineering, Shanghai University, where he



International Journal of Network Security, Vol.17, No.4, PP.463-470, July 2015 470

is currently a Professor. He was with the State University
of New York at Binghamton as a visiting scholar from
January 2010 to January 2011, and Konstanz University
as an experienced researcher sponsored by the Alexander
von Humboldt Foundation from March 2011 to May
2012. His research interests include multimedia security,
image processing, and digital forensics. He has published
more than 170 papers in these areas.

Min-Shiang Hwang received the B.S. in Electronic En-
gineering from National Taipei Institute of Technology,
Taipei, Taiwan, Republic of China, in 1980; the M.S. in
Industrial Engineering from National Tsing Hua Univer-
sity, Taiwan, in 1988; and the Ph.D. in Computer and In-
formation Science from National Chiao Tung University,
Taiwan, in 1995. He also studied Applied Mathematics
at National Cheng Kung University, Taiwan, from 1984-
1986. Dr. Hwang passed the National Higher Examina-
tion in field ”Electronic Engineer” in 1988. He also passed
the National Telecommunication Special Examination in
field ”Information Engineering”, qualified as advanced
technician the first class in 1990. From 1988 to 1991, he
was the leader of the Computer Center at Telecommuni-
cation Laboratories (TL), Ministry of Transportation and
Communications, ROC. He was also a project leader for
research in computer security at TL in July 1990. He ob-
tained the 1997, 1998, and 1999 Distinguished Research
Awards of the National Science Council of the Republic
of China. He is a member of IEEE, ACM, and Chinese
Information Security Association. His current research in-
terests include database and data security, cryptography,
image compression, and mobile communications.


