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Abstract

In a batch verifying scheme, multiple RSA digital signa-
tures can be verified simultaneously in just one exponen-
tial operation time. Currently, the verifier could not easily
detect where the signature-verification fault was located
in most schemes, if the batch verification fails. In this arti-
cle, we proposed a new batch verifying multiple RSA dig-
ital signatures scheme based on a cube. The scheme can
detect accurately where the signature-verification fault
is located. Moreover, once the total number of signa-
tures is fixed, the size of exponentiation operations is in-
dependent from the number of illegal signatures in our
scheme. Therefore, our scheme has a better performance
and higher efficiency than the previous ones. Finally, we
described an extend batch verifying scheme under the con-
dition of n-dimension.

Keywords: Batch verifying, digital signature, multiple sig-
natures

1 Introduction

RSA is a well-known public key cryptosystem where each
user has a public key e for encryption (verification) and
a private key d for decryption (signature) [17,18]. It pro-
tects the transaction information over the network [16],
and satisfies the requirement of user authentication and
communication security on networking environments [15].
In a RSA signature scheme, the signer uses the personal
private key d to sign document M and obtains the sig-
nature S = Md, and then the receiver verifies whether
M = Se using the signer’s public key e. If there are t
documents and signatures (Mi, Si)(i = 1, · · · , t), the re-
ceiver then needs to verify these signatures one by one
and fully executes t exponential computations [11]. This
will reduce the computer host’s processing ability and the

efficiency of RSA signature scheme. Therefore, the con-
cept of batch verifying signatures has been introduced to
efficiently improve the performance of verifying multiple
RSA signatures [2, 6, 8, 13,19,20].

Harn proposed a batch verifying multiple RSA signa-
ture scheme [5] in 1998, where multiple signatures could
be verified simultaneously in just one exponential oper-
ation time. Such method is considered to be more ef-
ficient than the previous signature schemes where the
signer must repeatedly verify each signature [3,12]. How-
ever, Hwang et al. showed that the Harn’s scheme could
not resist two kinds of attacks [7, 10]. In addition, the
verifier could not detect where the signature-verification
fault was located if the batch verification fails in Harn’s
scheme. Since the verifier must re-verify each of the signa-
tures and then confirms where the signature-verification
fault is located, it is inefficient to detect the illegal sig-
natures. There are many batch verifying multiple RSA
signature schemes have been proposed [1, 4, 12,21].

Recently, Li et al. proposed a matrix-based solution to
quickly find out where the signature-verification faults are
located without re-verifying each of the signatures [14].
In their scheme, the performance would be at its best
when both numbers of row and column square roots are
equal to the message’s numbers. Let’s assume there are
25 signatures, the scheme is the most efficient one and
the verifier needs to execute 10 exponential computations
when the matrix has 5 rows and 5 columns. If there is one
illegal signature, the verifier needs to execute 10 exponen-
tial computations. If there are two illegal signatures, the
verifier needs to execute 14 exponential computations to
detect the illegal signatures.

In this paper, we present a new batch verifying scheme
which is especially efficient when there are illegal signa-
tures. When the verifier receives t signatures, it generates
a cube of side length n and fills these t signatures in the
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n × n × n cube, where n is the smallest integer which
satisfies n3 ≥ t. Let’s assume there are 25 signatures,
the verifier generates a cube of side length 3 and executes
3 + 3 + 3 = 9 exponential computations since 3 is the
smallest integer which satisfies 33 ≥ 25. Moreover, the
verification time would not increase as the number of the
illegal signatures increases.

The paper is organized as follows: In Section 2, we
review two batch verifying schemes including Harn’s and
Li’s scheme. Then we present the proposed scheme and
compare its performance with that of previous schemes
in Sections 3 and 4, respectively. In Section 5, an ex-
tended batch verification scheme is described. Finally, we
conclude our paper in Section 6.

2 Two Batch Verifying Scheme

We review two batch verifying schemes before presenting
the proposed one.

2.1 Harn’s Scheme

In this section, we first introduce Harn’s batch verifying
scheme [5]. Let’s assume p and q are two prime numbers,
and N = pq. e and d are presented as the signer’s public
key and private key respectively, which satisfies ed ≡ 1
mod ϕ(N), and ϕ(·) is the Euler function. h(·) is a public
one-way hash function.

We suppose Alice sends the messages M0, M1, · · · ,
Mt−1 and signatures S0, S1, · · · , St−1 to Bob, where
Si = h(Mi)

d mod N , (i = 0, 1, · · · , t− 1). Bob can verify
these signatures using Alice’s public key e by the following
equation:

(

t−1∏
i=0

Si)
e ?

=

t−1∏
i=0

h(Mi). (1)

If Equation (1) holds, (S0, S1, · · · , St−1) are valid sig-
natures of M0, M1, · · · , Mt−1, respectively. In Harn’s
scheme, these signatures can be verified simultaneously
in one exponential operation time.

2.2 Li et al.’s Scheme

The scheme was proposed by Li et al. recently [14]. When
the verifier receives the messages (M1, S1), (M2, S2), · · · ,
(Mt, St) from the signer, the verifier will generate an m×n
matrix (where m × n ≥ t) and t random numbers ri,
i = 1, 2, . . . , t, where ri ∈ {1, 2, . . . , t}. He then randomly
fills these t messages into the m × n matrix using the
following equation (see Table 1):

S(m,n) =

{
S(dri/ne, n), if ri mod n = 0
S(dri/ne, ri mod n), otherwise.

(2)

After filling these messages in the m×n matrix, the ver-
ifier could batch verify each of the rows and the columns,

Table 1: An m× n matrix

S(1,1) S(1,2) . . . S(1,n-1) S(1,n)
S(2,1) S(2,2) . . . S(2,n-1) S(2,n)

...
...

...
...

...
S(m-1,1) S(m-1,2) . . . S(m-1,n-1) S(m-1,n)

S(m,1) S(m,2) . . . S(m,n-1) S(m,n)

respectively. The complete batch verifying process is di-
vided into two verifications: row verification and column
verification. The details of row and column verification
are shown as follows.
• Row verification:

First row: (
∏n

i=1 S(1,i))
e ?

=

∏n
i=1 h(M(1,i)) mod N ,

Second row: (
∏n

i=1 S(2,i))
e ?

=

∏n
i=1 h(M(2,i)) mod N ,

...
m-th row: (

∏n
i=1 S(m,i))

e ?
=

∏n
i=1 h(M(m,i)) mod N .

• Column verification:

First column: (
∏m

i=1 S(i,1))
e ?

=

∏m
i=1 h(M(i,1)) mod N ,

Second column: (
∏m

i=1 S(i,2))
e ?

=

∏m
i=1 h(M(i,2)) mod N ,

...
n-th column: (

∏m
i=1 S(i,n))

e ?
=

∏m
i=1 h(M(i,n)) mod N .

If there are some signature-verification faults in the ma-
trix, we could find out where these signature-verification
faults are located by finding the matrix positions of row
and column overlaps.

Table 2: An 5× 5 matrix

S(1,1) S(1,2) S(1,3) S(1,4) S(1,5)
S(2,1) S(2,2) S(2,3) S(2,4) S(2,5)
S(3,1) S(3,2) S(3,3) S(3,4) S(3,5)
S(4,1) S(4,2) S(4,3) S(4,4) S(4,5)
S(5,1) S(5,2) S(5,3) S(5,4) S(5,5)

Suppose Alice sends 25 messages to Bob, then Bob
will generate 25 random numbers and a 5 × 5 matrix
shown as Table 2. After batch verifying each of the rows
and the columns, Bob could easily realize there was a
signature-verification fault occurring and precisely detects
where the signature-verification fault is located. Assume
there was one signature-verification fault in the position
S(3, 3) of matrix, there would occur two verification fails
and these two fails would occur in the third row and the
third column, respectively. According to the verification
fails of the third row and the third column overlaps, the
signature-verification fault could be precisely detected in
the position S(3, 3) of matrix. However, it is possible for
the verifier to execute additional operations if two illegal
signatures occur. As shown in [14], the number of total
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verification is 10 if two signature-verification faults are
occurring on the same row or on the same column, and
the number is 14 if two illegal signatures are occurring on
adjacent diagonal or not occurring on the same row or not
on the same column. Please refer to [14] for more details.

3 The Proposed Scheme

We now present a batch verifying multiple signatures
scheme which is more efficient than the previous ones,
especially when the illegal signature occurs. The details
of our scheme are described as follows.

First, the verifier generates a cube with side length
m when he receives some pairs of message and signa-
ture (M0, S0), (M1, S1), · · · , (Mt−1, St−1) from the signer,
where m is the smallest integer which satisfies m3 ≥ t.

Next, the verifier chooses t random numbers ri, where
ri ∈ {0, 1, · · · ,m3 − 1}, i = 0, 1, · · · , t−1, and fills these t
signatures in the m×m×m cube according to coordinate
figure (x, y, z), where

ri = xm2 + ym + z, and x, y, z ∈ {0, 1, · · · ,m− 1}. (3)

Finally, the verifier could then batch verify each plane
according to the three coordinate axes. The details are
shown as follows.

• x-axis plane:

x = 0: (
∏m−1

i=0

∏m−1
j=0 S(0,i,j))

e ?
=

∏m−1
i=0

∏m−1
j=0 h(M(0,i,j)),

x = 1: (
∏m−1

i=0

∏m−1
j=0 S(1,i,j))

e ?
=

∏m−1
i=0

∏m−1
j=0 h(M(1,i,j)),

...
x = m− 1:

(
∏m−1

i=0

∏m−1
j=0 S(m−1,i,j))

e ?
=

∏m−1
i=0

∏m−1
j=0 h(M(m−1,i,j)).

• y-axis plane:

y = 0: (
∏m−1

i=0

∏m−1
j=0 S(i,0,j))

e ?
=

∏m−1
i=0

∏m−1
j=0 h(M(i,0,j)),

y = 1: (
∏m−1

i=0

∏m−1
j=0 S(i,1,j))

e ?
=

∏m−1
i=0

∏m−1
j=0 h(M(i,1,j)),

...
y = m− 1:

(
∏m−1

i=0

∏m−1
j=0 S(i,m−1,j))

e ?
=

∏m−1
i=0

∏m−1
j=0 h(M(i,m−1,j)).

• z-axis plane:

z = 0: (
∏m−1

i=0

∏m−1
j=0 S(i,j,0))

e ?
=

∏m−1
i=0

∏m−1
j=0 h(M(i,j,0)),

z = 1: (
∏m−1

i=0

∏m−1
j=0 S(i,j,1))

e ?
=

∏m−1
i=0

∏m−1
j=0 h(M(i,j,1)),

...
z = m− 1:

(
∏m−1

i=0

∏m−1
j=0 S(i,j,m−1))

e ?
=

∏m−1
i=0

∏m−1
j=0 h(M(i,j,m−1)).

If there are some signature-verification faults in the
cube, we could find out where these faults are located by
finding the point of intersection of three kinds of plane. As
shown in Figure 1, there is a signature-verification fault

Figure 1: An m×m×m cube

in the position (a, b, c) of the cube if three verifications
fail in the x = a, y = b, and z = c plane, respectively.

We will now give a simple example to show the
correctness of our scheme. Let’s suppose Alice have sent
64 messages to Bob, then Bob will choose 64 random
numbers and generate a 4 × 4 × 4 cube as shown in
Figure 2. If r0 = 22, the pair (M0, S0) would be filling in
the position (1, 1, 2) of the cube since 22 = 1 ·42 +1 ·4+2.
If r1 = 45, the pair (M1, S1) would be filling in the
position (2, 3, 1) of the cube because 45 = 2 ·42 + 3 ·4 + 1.
The rest can be deduced similarly by Equation (2). After
filling 64 signatures in the cube, Bob could then batch
verify three kinds of plane by the method described above.

• x-axis plane:

x = 0: (
∏3

i=0

∏3
j=0 S(0,i,j))

e ?
=

∏3
i=0

∏3
j=0 h(M(0,i,j)),

x = 1: (
∏3

i=0

∏3
j=0 S(1,i,j))

e ?
=

∏3
i=0

∏3
j=0 h(M(1,i,j)),

x = 2: (
∏3

i=0

∏3
j=0 S(2,i,j))

e ?
=

∏3
i=0

∏3
j=0 h(M(2,i,j)),

x = 3: (
∏3

i=0

∏3
j=0 S(3,i,j))

e ?
=

∏3
i=0

∏3
j=0 h(M(3,i,j)).

• y-axis plane:

y = 0: (
∏3

i=0

∏3
j=0 S(i,0,j))

e ?
=

∏3
i=0

∏3
j=0 h(M(i,0,j)),

y = 1: (
∏3

i=0

∏3
j=0 S(i,1,j))

e ?
=

∏3
i=0

∏3
j=0 h(M(i,1,j)),

y = 2: (
∏3

i=0

∏3
j=0 S(i,2,j))

e ?
=

∏3
i=0

∏3
j=0 h(M(i,2,j)),

y = 3: (
∏3

i=0

∏3
j=0 S(i,3,j))

e ?
=

∏3
i=0

∏3
j=0 h(M(i,3,j)).

• z-axis plane:

z = 0: (
∏3

i=0

∏3
j=0 S(i,j,0))

e ?
=

∏3
i=0

∏3
j=0 h(M(i,j,0)),

z = 1: (
∏3

i=0

∏3
j=0 S(i,j,1))

e ?
=

∏3
i=0

∏3
j=0 h(M(i,j,1)),

z = 2: (
∏3

i=0

∏3
j=0 S(i,j,2))

e ?
=

∏3
i=0

∏3
j=0 h(M(i,j,2)),

z = 3: (
∏3

i=0

∏3
j=0 S(i,j,3))

e ?
=

∏3
i=0

∏3
j=0 h(M(i,j,3)).
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Table 3: Experiment results of RSA, Harn, Li, and our schemes

Method Message Size of Row Size of x Size of
(Column) (y, z)-axis exponentiation

RSA [18] 25 — — 25
Harn [5] 25 — — 1

Li [14] 25 5 — 10
Ours 25 — 3 9

Method Message Size of Row Size of x Size of
(Column) (y, z)-axis exponentiation

RSA [18] 100 — — 100
Harn [5] 100 — — 1

Li [14] 100 10 — 20
Ours 100 — 5 15

Method Message Size of Row Size of x Size of
(Column) (y, z)-axis exponentiation

RSA [18] 256 — — 256
Harn [5] 256 — — 1

Li [14] 256 16 — 32
Ours 256 — 7 21

Figure 2: An 4× 4× 4 cube

After batch verifying each plane, Bob is now confirmed
whether the signature-verification fault is occurring or
not. We suppose there was one signature-verification fault
in the position (1, 2, 3) of the cube, so Bob could real-
ize there was a signature-verification fault occurring and
precisely detects where the signature-verification fault is
located. From the method described above, there would
occur three verification that fails in the x = 1, y = 2, and
z = 3 plane, respectively. According to the point of inter-
section of three kinds of plane, the signature-verification
fault could be precisely detected in the position (1, 2, 3)
of the cube.

4 Implementation and Result
Analysis

4.1 Experimental Results

In this section, we implement RSA, Harn’s scheme, Li’s
scheme, and ours, with the experimental results of four
schemes shown in Table 3. From Table 3, we have con-
cluded that Harn’s scheme is better when the batch ver-
ification of multiple signatures have succeeded. However,
it must re-verify all signatures if there are illegal ones as
presented in Section 1. Thus, the performance of Harn’s
scheme is worse than Li’s and ours when illegal signatures
occur. In addition, our scheme needs less exponentiation
operations for the same number of messages. Therefore,
the performance of our scheme is best in most situations.

In Table 3, we compared the sizes of exponentiation
operations for different number of signatures in all four
schemes. In RSA scheme, the verifier needs to verify the
signatures one by one, so the sizes of exponentiation op-
erations are 25, 100, and 256, respectively. As described
in Section 2, the verifier can determine the correctness of
signature by using one exponential operation in Harn’s
scheme. Therefore, we only need to show the size of ex-
ponentiation operations in Li’s and our scheme. In Li’s
scheme, the verifier can obtain 5× 5, 10× 10, and 16× 16
matrixes and executes 5 + 5 = 10, 10 + 10 = 20, and
16 + 16 = 32 exponentiation operations for 25, 100, and
256 signatures since 5, 10 and 16 are the square root of
25, 100, and 256, respectively. In our scheme, the verifier
can generate 3× 3× 3, 5× 5× 5, and 7× 7× 7 cubes and
executes 3 + 3 + 3 = 9, 5 + 5 + 5 = 15, and 7 + 7 + 7 = 21
exponentiation operations since 3, 5, 7 are the smallest
integer which satisfies 33 ≥ 25, 53 ≥ 100, and 73 ≥ 256,
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Table 4: Comparisons for detecting illegal signatures among RSA, Harn, Li, and our schemes

Method Message Size of exponentiation Size of exponentiation
(one illegal signature) (two illegal signatures)

RSA [18] 25 25 25
Harn [5] 25 26 26

Li [14] 25 10 14
Ours 25 9 9

Method Message Size of exponentiation Size of exponentiation
(one illegal signature) (two illegal signatures)

RSA [18] 100 100 100
Harn [5] 100 101 101

Li [14] 100 20 24
Ours 100 15 15

Method Message Size of exponentiation Size of exponentiation
(one illegal signature) (two illegal signatures)

RSA [18] 256 256 256
Harn [5] 256 257 257

Li [14] 256 32 36
Ours 256 21 21

respectively.

4.2 Analysis of Illegal Signature Detec-
tion

In this section, we now present the size of exponentiation
operations in four schemes when illegal signatures occur.
As described in Section 1, the performance of illegal sig-
natures detection is regarded as the position it is located
in. From Table 4, we know that our scheme is better
than Harn’s and Li’s for determining the situation where
illegal signatures are located. Once the total number of
signatures is fixed, the size of exponentiation operations
is independent from the number of illegal signatures in
our scheme.

In Table 4, we compared the sizes of exponentiation
for detecting one and two illegal signatures among RSA,
Harn, Li, and our schemes. In RSA scheme, the ver-
ifier needs to verify the signatures one by one, so the
sizes of exponentiation operations are 25, 100, and 256
respectively. In Harn’s scheme, the verifier must re-verify
each signatures if there are illegal ones, so he needs to
execute 26, 101, and 257 exponentiation operations, re-
spectively. As shown in Section 2.2, in Li’s scheme, one
illegal signature can be detected accurately after batch
verification finished, and the verifier must add 4 expo-
nentiation operations if there are two illegal signatures.
From Table 3, we know that 10, 20, and 32 operations
are needed for 25, 100, and 256 signatures respectively
in Li’s scheme. Thus, the verifier executes 10, 20, and 32
operations when one illegal signature occurs; and 14, 24,
and 36 operations if there are two illegal signatures in Li’s
scheme. In our scheme, the position of illegal ones can be
determined accurately once batch verification is finished

and the size of operations are independent from the num-
ber of signatures. From Table 3, we know that 9, 15, and
21 operations are needed for 25, 100, and 256 signatures
respectively in our scheme. Therefore, the sizes of ex-
ponentiation operations are 9, 15, and 21 in our scheme
whether one or two faults occurred.

5 The Extension of the Scheme

The proposed scheme is based on a cube, and we can ex-
tend it to the condition of n-dimension. First, the ver-
ifier generates an n-dimension object with side length
m when he receives some pairs of message and signa-
ture (M0, S0), (M1, S1), · · · , (Mt−1, St−1) from the signer,
where m is the smallest integer which satisfies mn ≥ t.

Next, the verifier chooses t random numbers ri, where
ri ∈ {0, 1, · · · ,mn − 1}, i = 0, 1, · · · , t − 1, and fills
these t messages in the mn object according to coordinate
figure (an−1, an−2, · · · , a1, a0), where an−1, · · · , a1, a0 ∈
{0, 1, · · · ,m− 1} and

ri = an−1m
n−1 + an−2m

n−2 + · · ·+ a1m + a0.

Finally, the verifier could then batch verify each plane
according to n-dimension coordinate axis. The details are
described as follows.

1) an−1-axis plane:

a. an−1 = 0:

(

m−1∏
an−2=0

· · ·
m−1∏
a0=0

S(0,an−2,··· ,a0))
e

?
=

m−1∏
an−2=0

· · ·
m−1∏
a0=0

h(M(0,an−2,··· ,a0)).
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b. an−1 = 1:

(

m−1∏
an−2=0

· · ·
m−1∏
a0=0

S(1,an−2,··· ,a0))
e

?
=

m−1∏
an−2=0

· · ·
m−1∏
a0=0

h(M(1,an−2,··· ,a0)).

...
...

c. an−1 = m− 1:

(

m−1∏
an−2=0

· · ·
m−1∏
a0=0

S(m−1,an−2,··· ,a0))
e

?
=

m−1∏
an−2=0

· · ·
m−1∏
a0=0

h(M(m−1,an−2,··· ,a0)).

2) an−2-axis plane:

a. an−2 = 0:

(

m−1∏
an−1=0

m−1∏
an−3=0

· · ·
m−1∏
a0=0

S(an−1,0,··· ,a0))
e

?
=

m−1∏
an−1=0

m−1∏
an−3=0

· · ·
m−1∏
a0=0

h(M(an−1,0,··· ,a0)).

b. an−2 = 1:

(

m−1∏
an−1=0

m−1∏
an−3=0

· · ·
m−1∏
a0=0

S(an−1,1,··· ,a0))
e

?
=

m−1∏
an−1=0

m−1∏
an−3=0

· · ·
m−1∏
a0=0

h(M(an−1,1,··· ,a0))

...
...

c. an−2 = m− 1:

(

m−1∏
an−1=0

m−1∏
an−3=0

· · ·
m−1∏
a0=0

S(an−1,m−1,··· ,a0))
e

?
=

m−1∏
an−1=0

m−1∏
an−3=0

· · ·
m−1∏
a0=0

h(M(an−1,m−1,··· ,a0)).

...

3) a0-axis plane:

a. a0 = 0:

(

m−1∏
an−1=0

· · ·
m−1∏
a1=0

S(an−1,··· ,a1,0))
e

?
=

m−1∏
an−1=0

· · ·
m−1∏
a1=0

h(M(an−1,··· ,a1,0)).

b. a0 = 1:

(

m−1∏
an−1=0

· · ·
m−1∏
a1=0

S(an−1,··· ,a1,1))
e

?
=

m−1∏
an−1=0

· · ·
m−1∏
a1=0

h(M(an−1,··· ,a1,1)).

...
...

c. a0 = m− 1:

(

m−1∏
an−1=0

· · ·
m−1∏
a1=0

S(an−1,··· ,a1,m−1))
e

?
=

m−1∏
an−1=0

· · ·
m−1∏
a1=0

h(M(an−1,··· ,a1,m−1)).

Therefore, the total number of exponentiation oper-
ations is mn in the extended batch verification scheme.
If there are some signature-verification faults in the n-
dimension object, we could find out where these faults
are located by finding the point of intersection of n kinds
of plane. For example, there is a signature-verification
fault in the position (0, 1, · · · ,m− 1) of the n-dimension
object, if n verifications failed in the an−1 = 0 plane,
an−2 = 1 plane, · · · and a0 = m− 1 plane, respectively.

6 Conclusions

We presented a new batch verification multiple RSA sig-
natures scheme which fills the signatures into a cube. It
can detect accurately where the illegal signatures are lo-
cated without additional re-verify operations. Moreover,
the verification time would not increase as the number of
the illegal signatures increases in one batch verification.
Experiment shows our scheme is more efficient than the
previous schemes, especially when the number of the sig-
natures is very large. We then extended this scheme to
the condition of n-dimension.
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