
International Journal of Network Security, Vol.8, No.3, PP.253–265, May 2009 253

Policy-driven and Content-based Web Services
Security Gateway

Zein Radwan, Camille Gaspard, Ayman Kayssi, and Ali Chehab
(Corresponding author: Ali Chehab)

Department of Electrical and Computer Engineering, American University of Beirut
Beirut 1107 2020, Lebanon (Email: chehab@aub.edu.lb)

(Received Feb. 19, 2008; revised May 5, 2008; and accepted June 13, 2008)

Abstract

Web Services are widely used to provide services and ex-
change data among business units, customers, partners
and suppliers for enterprises. Although Web Services sig-
nificantly improve the interaction and development of pro-
cesses in the business world, they raise several security
concerns, since they greatly increase the exposure of crit-
ical enterprise data. Web Services exchange data using
SOAP messages that are based on the interoperable XML
language. We have previously introduced XPRIDE as an
enhanced security architecture for assuring confidentiality
and integrity of SOAP messages. XPRIDE uses content-
based encryption to secure SOAP messages based on their
XML content, and depends on security policies to define
the parts of the SOAP message that need to be encrypted.
Security policies are defined by administrators for each
Web Service that needs to be secured. This paper extends
XPRIDE using a modular design approach to ensure ex-
tensibility, such that new modules can be developed and
deployed to handle the security of different types of data.
In addition, we show a new implementation of XPRIDE
as a gateway capable of applying content-based security
on attachments of SOAP messages, where a single gate-
way serves several web servers in a web farm. These new
features significantly improve the security, scalability, and
deployability of XPRIDE.
Keywords: Web services, SOAP, confidentiality, in-
tegrity, policy-based security, content-based security

1 Introduction

Web Services are becoming the most common way for en-
terprise applications to exchange data. This importance
stems from the fact that Web Services are platform- and
language-independent and easily discovered by clients.
Enterprises deploy Web Services to be able to exchange
data and share services with other enterprises, customers,
partners and suppliers. Web Services are also needed for

data collection, delivery, display, and processing. This
has pushed the trend for enterprises to implement a
Service-Oriented Architecture (SOA) in their enterprise
networks. Although the Web-Services-based application-
to-application architecture significantly improves the in-
teraction and development of the processes in the business
world, it raises many security concerns, since it increases
the exposure of the critical and sensitive data that is being
exchanged.

Web Services exchange information using the SOAP
messaging protocol [1]. SOAP uses eXtensible Markup
Language (XML) based documents to wrap the trans-
mitted data. Several methods are used to ensure con-
fidentiality by encrypting the sensitive data exchanged
among Web Services. The encryption phase can be in-
tegrated into the application by modifying the code of
the application itself to encrypt the content of the SOAP
message. Encryption may also be achieved by relying
on the transport layer security technologies, such as Se-
cure Sockets Layer (SSL) [2] or Transport Layer Security
(TLS) [3]; these technologies present a point-to-point se-
curity solution that provides confidentiality and integrity
for the data exchanged. Security for Web Services may
also be performed at the SOAP message level by using
XML security techniques such as XML Encryption [4] and
XML Digital Signature [5]. The Organization for the Ad-
vancement of Structured Information Standards (OASIS)
presented the Web Services Security Specification (WS-
Security) [6] as a way for Web Services to use different
security models via SOAP extensions. This specification
describes enhancements to SOAP messaging to provide
message integrity and confidentiality by relying on exist-
ing specifications such as XML Encryption and XML Dig-
ital Signature. The specification also provides a general-
purpose mechanism for associating security tokens with
message content.

To avoid the unnecessary effort and delay of bulk en-
cryption, PRIDE [7] was developed as an efficient content-
based security solution [11] for protecting the privacy and

International Journal of Network Security, Vol.8, No.3, PP.253–265, May 2009 254

integrity of Web traffic exchanged between enterprise ap-
plication servers on the Internet and mobile wireless de-
vices. PRIDE is a policy-driven security architecture that
employs content-based encryption and hashing method-
ologies to secure network data based on sensitivity and rel-
evance. XPRIDE [20] was suggested as a SOAP security
solution for securing the XML SOAP messages exchanged
over the network between SOAP processors. XPRIDE is a
policy-driven security architecture that employs content-
based encryption to secure the SOAP messages based on
their XML content. XPRIDE performs content-based se-
curity depending on security policies that are defined by
administrators to specify exactly the security required for
each part of the data.

In this paper we significantly enhance the design and
implementation of XPRIDE. The system is redesigned in
a modular way to ensure extensibility and a clear separa-
tion of duties. Thus, security is handled by one module
while other additional SOAP message-related tasks are
provided by other, separate modules. Moreover, dividing
the functionalities into modules enables the XPRIDE sys-
tem to more easily adapt to new future requirements. The
original XPRIDE was designed as a SOAP filter that in-
tercepts SOAP messages going out and into a Web Service
[20]. In this work, we show an additional implementation
of the optimized and modular XPRIDE system as a re-
verse proxy gateway using a local Domain Name Server
(DNS) and a HyperText Transfer Protocol (HTTP) lis-
tener. The use of reverse proxy also improves scalability
and security since the XPRIDE gateway forms an addi-
tional layer of protection and security when used in front
of hidden Web servers.

The rest of the paper is organized as follows. In Sec-
tion 2, we review techniques used to secure Web Services.
Section 3 presents previous work related to Web Services
security. In Section 4, the general design of the XPRIDE
system is shown. Section 5 presents the details of a proto-
type implementation of XPRIDE as SOAP filters. Section
6 includes the details of the other prototype implementa-
tion of XPRIDE as a reverse proxy. Conclusions are given
in Section 7.

2 Overview of Web Services Secu-
rity

2.1 Secure Sockets Layer (SSL)

SSL encrypts all data transmitted across a network and
can thus prohibit eavesdropping and unauthorized ac-
cess to Web Services and SOAP messages. This technol-
ogy ensures point-to-point security by establishing a se-
cure channel on top of the Transmission Control Protocol
(TCP), and provides data integrity and confidentiality in
addition to authentication. Point-to-point security tech-
niques are appropriate for creating secure connections in
which information can be transmitted directly. However,
SOAP messages sent over the network may need to travel

through numerous intermediaries before reaching their ul-
timate SOAP receiver. Thus, in a Web Services architec-
ture, intermediaries can manipulate a message on its way
to the receiver. But when using a transport layer security
technology such as SSL, intermediaries will no longer be
able to control the SOAP messages [8], since the message
would need to be decrypted by the intermediary before
being forwarded to the ultimate receiver using a new en-
crypted stream. In addition, SSL performs bulk encryp-
tion on the whole data (in this case the SOAP messages)
as one stream, without separating sensitive data from the
insignificant data that causes no threat whatsoever if ex-
posed. Although most of the data in some cases need not
be secured, SSL encrypts everything, thus causing addi-
tional delay and inefficiency in the system performance
especially if significant amounts of data are transmitted.
Therefore, protocols like SSL don’t scale well to complex,
high-volume transactions, like those in Web Services.

2.2 XML Encryption

XML Encryption provides security at the SOAP message
level. XML Encryption describes the process for encrypt-
ing and representing the encrypted data in XML docu-
ments. The specification supports common encryption
algorithms and techniques, and provides ways to encrypt
all or just parts of the XML text in the message, by us-
ing XPath expressions to reach the XML elements that
need to be encrypted. XML Encryption is efficient be-
cause information that is not confidential can be sent un-
encrypted.

2.3 XML Signature

XML Signature defines syntax and processing rules for
representing digital signatures. XML Signatures provide
integrity, message authentication, signer authentication
and proof for non-repudiation of who created the message.
Like XML Encryption, XML Signature is able to sign only
specific parts of the XML file. This is relevant when the
data is generated, edited, or viewed by several users, and
when the integrity of specific portions of the data has
to be ensured, but other portions may still be open to
changes.

2.4 Security Assertion Markup Language
(SAML)

SAML, developed by OASIS, defines a way to express se-
curity information in an XML format. SAML functions as
a framework for exchanging authentication, attribute, and
authorization assertions across multiple participants over
the Internet using protocols such as HTTP and SOAP. As-
sertions provide proof of identity for users and computers,
via SAML subjects, which contain identity-related infor-
mation. In addition, assertions list transaction-related
user information (such as credit limits for e-commerce).
SAML can also indicate the authentication method that

International Journal of Network Security, Vol.8, No.3, PP.253–265, May 2009 255

must be used with a message, such as a password, Ker-
beros authentication ticket, hardware token, or X.509 dig-
ital certificate.

2.5 WS-Security Family Specifications

To combine multiple security techniques and concepts to-
gether, Microsoft, IBM and VeriSign have developed the
WS-Security specification that was submitted to OASIS
to be standardized. The task was not to invent a new
security mechanism, but rather to define ways to use
the techniques that already existed in the Web Services
world. WS-Security defines a set of SOAP security exten-
sions that can be used to insure message content integrity
and confidentiality, by applying existing standards and
specifications such as XML Encryption and XML Signa-
ture among other techniques. What WS-Security adds
to existing specifications is a framework to embed these
mechanisms into a SOAP message through additional se-
curity headers. Therefore, WS-Security covers the use
of a general-purpose technique to associate security to-
kens with messages. These tokens represent a collection
of claims. Claims are the statements that a related client
makes, for example name, identity, key, group, privilege,
capability, etc. The security token is not limited to a spe-
cific type; the specification is designed to be extensible.
For example, a client may provide proof of identity and
proof that it has a particular business certification.

Other specifications that directly relate to security is-
sues such as WS-SecurityPolicy, WS-Trust, WS-Privacy,
WS-Authorization, and WS-Federation are developed
based on WS-Security. In the protocol stack and right
on top of WS-Security, we find the WS-Policy specifica-
tions (with its security attached WS-SecurityPolicy spec-
ification). WS-SecurityPolicy [9] specifies how to define
security assertions that clearly state a Web Service’s pref-
erences and security requirements, such as the signature
and encryption algorithms used, and the parts of the
message (XML elements) that need to be secured. WS-
SecurityPolicy builds on the foundation of WS-Policy that
defines a general approach to specifying policies of all
kinds for Web Services.

2.6 Web Services Firewalls

Traditional network firewalls are blind to Web Services
traffic when TCP ports 80 and 443 are open to HTTP
traffic, thereby allowing SOAP and XML messages to flow
undetected into an enterprise internal network. Thus, a
Web Services firewall is useful where a combination of a
packet filter firewall and an application level firewall are
combined. The packet filter firewall checks every packet
and detects SOAP messages. Every SOAP message is
then redirected to an application-level firewall that anal-
yses the message based on predefined policies. Policies
may be used for data integrity checks. After checks and
countermeasures are applied, the SOAP message is routed
to its destination. The Web Services firewall may be ex-

tended by several modules such as user access control,
logging, accounting and load balancing modules.

3 Related Work

In this section we review work related to securing Web
Services.

In [12], Bhargavan et al. indicate that despite the flex-
ibility brought by the WS-Security specifications group,
driving Web Services security from WS-SecurityPolicy
is not necessarily the best solution. First, they argue
that WS-SecurityPolicy drives low level mechanisms that
build and check individual security headers although what
is needed is a way to relate policies to more abstract,
application-level goals such as message authentication or
secrecy. Second, all XML files used in a SOAP-based sys-
tem, including WS-SecurityPolicy files are vulnerable to
XML rewriting attacks. Furthermore, an essential limi-
tation of the policy language in their opinion is that it
is stateless, meaning that its interpretation does not de-
pend on previously-received messages. Thus, the authors
propose in their work a new link language and two new
tools to address these problems. The high-level link spec-
ification language is a simple notation that describes the
required secrecy and authentication specifications for all
messages flowing between SOAP processors, and could
easily be generated from a simple user interface or a sys-
tems modeling tool. Their first tool compiles link spec-
ifications to WS-SecurityPolicy configuration files, while
their second tool is an analyzer to check (prior to exe-
cution) whether the security goals of a link specification
are achieved by a given set of WS-SecurityPolicy files and
whether they are vulnerable to any XML rewriting at-
tacks.

In [13], Fernandez proposes two security patterns for
Web Services. First, a Security Assertion Coordination
pattern that coordinates authentication and authoriza-
tion using a Role-Based Control (RBAC) model for access
to distributed resources; and second, a pattern for XML
firewalls that filter XML messages according to institution
policies. The second pattern ensures that a client can ac-
cess a Web Service only if it is authorized by the policy
and if the content of the message sent is considered to
be safe. The policies for each application are centralized
within the firewall that enforces the access control for the
application, and checks the content and structure of the
message. A Content Inspector is used to check the con-
tent of the XML messages sent from/to the application.
The Content Inspector consists of a Harmful Data Detec-
tor and an XML Schema Detector. The Harmful Data
Detector performs checks for harmful data embedded in
the content of the message, while the XML Schema De-
tector checks the validity of the XML documents sent to
the application, where the structure is validated through
a database of valid XML schemas.

In [14], Khoo and Zhou recommend that a service
provider should not choose security solutions randomly,

International Journal of Network Security, Vol.8, No.3, PP.253–265, May 2009 256

given a variety of emerging Web Services security stan-
dards. However, they provide some guidance to assist
service providers in choosing security solutions strategi-
cally by proposing a framework for matching the security
standards to the business security goals and choosing the
most suitable standard for each security requirement.

In [15], Cremonini et al. propose in their paper an in-
tegrated security model that combines Web Services and
firewall security. They argue that the Web Services ar-
chitecture has reached the phase where it is integrated
with excellent message security standards although the
network security community is strongly arguing against
it since in their opinion, security holds back functionality.
To handle the problem, the authors argue that firewalls
should evolve to meet the characteristics of the Web Ser-
vices architecture in order to combine the advantages of
both solutions.

In [16], Swart et al. reviewed security literature and
documented eight ways in which Web Services violate
traditional assumptions about security and may expose
corporate data to invasion if not properly addressed.

In [21], Damianou et al. present Ponder as a declar-
ative, object-oriented language used to specify policies
for the security and management of distributed systems.
The Ponder language provides the components necessary
to specify several types of policies, such as authorization
policies, event-triggered obligation policies, refrain poli-
cies, and delegation policies.

PRIDE [7] is a security architecture that provides con-
fidentiality and integrity for the Web traffic sent be-
tween wireless handheld devices and enterprise applica-
tion servers. PRIDE is a policy-based security solution
that is configured to provide the security services accord-
ing to the content and sensitivity of the network data
in a Web transaction, which gives PRIDE considerable
performance gains over bulk encryption protocols such as
SSL. PRIDE relies on a security policy to define the con-
tent that needs to be secured. The policy configuration is
stored in an XML-formatted document that is developed
for each web application secured by PRIDE. This policy
is used by a server security engine while a compacted ver-
sion is used on the client side to reduce the network traffic
and avoid any performance degradation on the client due
to XML parsing.

The original XPRIDE [20] acts as a SOAP filter that
performs security operations in a transparent manner to
the sender and receiver, and hides the processing details
and therefore avoids the application-level security com-
plexity. This approach avoids the unnecessary bulk en-
cryption carried out by transport layer security. The ad-
vantage that this solution has over the existing content-
based security provided by WS-Security, is that it sup-
ports the ability to secure specific pattern occurrences
in the SOAP messages exchanged, while WS-Security,
which relies on XML Encryption, enables whole XML ele-
ment encryption, although in many cases only parts of the
SOAP response element need to be encrypted. XPRIDE
applies security dynamically on the data without the need

Figure 1: XPRIDE high-level architecture

to specify (at design time) the parts that need to be en-
crypted as in WS-Security. Furthermore, the security
policy proposed in XPRIDE enables the use of content-
based security on the attachments appended to SOAP
messages, where the policy specifies the exact parts of
the attached files that should be encrypted, without the
need to encrypt the whole attachment. XPRIDE was first
implemented using the SOAP filters provided by the WSE
class library to access and secure the raw SOAP messages
based on the content relevance and sensitivity of the data
included.

4 Design and Architecture

An abstract view of the major components of the secu-
rity architecture and their interrelationships is shown in
Figure 1. XPRIDE is designed as an XML gateway that
intercepts the SOAP messages exchanged between Web
Services and their clients. Thus, it is located as a front-
end to the Web server that it handles, where it intercepts
all the traffic headed to that Web server.

XPRIDE provides content-based confidentiality and
integrity for SOAP messages and attachments. Moreover,
it is designed to provide a number of other XML security
features related to XML content, such as XML content
inspection, XML schema validation and XML access con-
trol. This is in addition to other XML functions not re-
lated to security such as XML transformation and XML
compression. The framework is designed to be scalable
and open to adapt to new features, where the functional-
ity is divided into modules. Thus, in order to add a new
feature to XPRIDE, it is sufficient to add the new mod-
ule that conforms to the specification and handles this
feature. An abstract view of the main components that
make up XPRIDE framework is shown in Figure 2.

4.1 HTTP Handler

XPRIDE is placed as a front-end to the Web server and
intercepts all the Web traffic coming to this Web server.

International Journal of Network Security, Vol.8, No.3, PP.253–265, May 2009 257

SOAP Separator

HTTP HandlerClient

Policies

Repository

Service

Processing Unit

SOAP Message Security
XML Access Control
Content Inspection

XML Schema Validation
XML Transformation
XML Compression

Web Traffic

SOAP Packets

SOAP Messages

 Administrator
GUI

Security

Handler

PDF

Handler

HTML

Handler

MS Word

Handler

Figure 2: XPRIDE framework main structure

Thus an HTTP Handler unit is needed to handle all the
HTTP transactions and deal with the HTTP message for-
mat, as it also separates the non-SOAP packets from the
SOAP packets that need to be further processed.

4.2 SOAP Separator

The SOAP Separator is responsible for parsing and ex-
tracting the XML SOAP messages out of the HTTP mes-
sage streams, where the rest of the processing will be per-
formed later to the XML SOAP message itself.

4.3 Processing Unit

The Processing Unit represents the core of XPRIDE. It
is responsible for performing content-based security and
other XML-related functions on the SOAP messages and
attachments. To ensure scalability, XPRIDE processing
unit functions are divided into modules, where each mod-
ule provides a specific function, with possible collabora-
tion among modules. The major Security Handler module
is responsible for ensuring confidentiality and integrity of
the SOAP messages, by applying digital signatures and
content-based encryption on the SOAP message and at-
tachments. In order to decide which parts of the SOAP
message content need to be secured; XPRIDE relies on
the security configurations that are specified in a Policy
File.

Separate modules may be included to handle the dif-
ferent types of attachment files (such as Microsoft Word
documents, PDF files, HTML files) This modular design
allows the set of features to be extended to handle various
file types.

Other modules are also included to provide a number

of XML security functions such as XML access control,
content inspection, and XML schema validation, in addi-
tion to other non security-related operations such as XML
transformation and XML compression.

4.4 Policies Repository

The repository is the persistent storage where all the poli-
cies are maintained. The policy definition controls the
behavior of the processing unit, and represents the re-
quirements stated by the system administrators.

4.5 The Security Policy and Scope

The Security Policy controls the overall security behav-
ior of XPRIDE. The policy configuration is stored in an
XML-formatted document for each Web Service secured
by XPRIDE, and is used by the XPRIDE Security Engine
on the sender side. A compacted version of the policy, pre-
sented as a reference table that indicates the locations of
the encrypted parts, is included with the secured message
in order for the client to be able to decrypt and validate
the received data.

The Policy is divided into two main parts (see Fig-
ure 3): the first part specifies security-related attributes
and parameters, while the second deals with how secu-
rity mechanisms are applied to the SOAP message. The
security-related attributes specified in the first part of the
policy control the behavior of the Security Engine regard-
ing how confidentiality, integrity and key management are
performed. The attributes are the encryption algorithm,
the hashing algorithm, the key management algorithm,
and the session-keys life time.

The second part of the policy is divided into three sec-
tions. The first section specifies the security classes that
are to be used by the policy. Each class holds a set of se-
curity specifications that can be applied later to different
parts of data by simply referring to the name of the spe-
cific class that holds the data without the need to repeat
the specifications again. These security classes are char-
acterized by the following attributes: class name, security
level, and integrity enforcement.

XPRIDE supports three security levels: a High Secu-
rity level equivalent to an AES [10] 256-bit key length; a
Medium Security level equivalent to an AES 192-bit key
length; and a Low Security level equivalent to an AES
128-bit key length. The three keys are derived from one
key that is initially generated during the key exchange
phase. The integrity enforcement attribute in the Policy
specifies if data integrity (using digital signatures) needs
to be applied.

The second and third sections of the Policy deal with
the SOAP message content. These sections specify the
security level and scope for each part of the message, by
assigning a certain security class for the part of the mes-
sage that needs to be secured.

The body of a SOAP message can be carrying either
the set of parameters needed to invoke a Web method,

International Journal of Network Security, Vol.8, No.3, PP.253–265, May 2009 258

Figure 3: Example of XPRIDE policy

in case the message is a SOAP request, or the response
content in case the message is a SOAP response. In or-
der to cover these two cases, and knowing that a policy is
assigned to one Web Service, the second section contains
the information needed to secure the responses leaving
this Web Service, while the third section contains the in-
formation needed to secure the requests made by this Web
Service.

Since a Web Service offers a number of methods that
can be invoked, the second section (responses) may con-
tain an entry for each Web method that is distinguished
by name. The third section (requests) includes entries for
the methods that belong to other Web Services that may
be requested and invoked by this Web Service, and whose
parameters need to be secured. In this case, the request
is distinguished by the requested method name and the
name of the Web Service it belongs to. Therefore, in case
XPRIDE is installed at the client side to secure the out-
going SOAP messages and this client is not a Web Service
itself, the policy file at the corresponding XPRIDE does
not need to include any entries in the “responses” section
since responses are never sent by this client.

The data exchanged between a Web Service client and
server includes the data that is serialized and enclosed in-
side the SOAP message, in addition to any attachment
files. Therefore, the policy tag “XML” declares that the
security specifications should be applied on the SOAP

message, while the policy tag “File” declares that the se-
curity specifications should be applied on the SOAP at-
tachments. Accordingly, data can be identified using the
following three mechanisms: filetype, regular expression,
or filetype and regular expression.

Filetype is used to specify the type of the SOAP at-
tachment file that needs to be secured. It can be any
valid file type extension, or an asterisk (*) for all files.
Regular expressions (REs) are used to match and secure
sensitive patterns that may appear inside the SOAP mes-
sage. REs allow securing specific pattern occurrences in
the SOAP messages exchanged, that are embedded in-
side the XML elements. The WS-Security specification
on the other hand, relies on XML encryption to accom-
plish content based encryption on the tag level, where
XML encryption relies on XPath expressions to reach a
specific XML element; thus, the minimum part that WS-
Security can reach is an XML element inside the SOAP
message. However, using XPRIDE security policy, the
data sent can be any text, and by using REs in the se-
curity policy we are still able to encrypt specific pattern
occurrences where the regular expressions specified in the
security policy are matched against the SOAP message,
and the matches found are encrypted using the appropri-
ate settings.

The XPRIDE Security Engine, after finding a match,
encrypts the entire data where the match occurred.

International Journal of Network Security, Vol.8, No.3, PP.253–265, May 2009 259

Client Server

Output
Filter

Input

Filter

Output

Filter

Input
Filter

Policies

Policies

Figure 4: XPRIDE filter implementation structure

“StartRegExp” is used to match a pattern occurrence,
and is used with “EndRegExp” to match and secure all
data that falls between these two regular expressions.
When an entry is declared in the policy, but no regular ex-
pression is specified in it, it means that the whole entry is
to be secured and no content-based matches are applied.
File type and regular expressions are combined together
in a policy to find and secure an occurrence of a specific
pattern in a file that is being attached; an example is se-
curing a specific match in an HTML or a Microsoft Office
Excel file. This way, the security policy enables content-
based security application on the attachments appended
to SOAP messages as well. All the above identification
mechanisms are used to specify the encryption boundaries
and security levels that are to be applied when enforcing
the policy.

4.6 Policy Caching

Policy resolving and caching are important features that
are included in the XPRIDE design. Caching improves
the policy loading time by using a compacted binary copy
of the security policy instead of parsing it every time it is
requested. However, due to the possible modification of
the policy configuration by administrators, a hash is used
to make sure that the policy information in the cache is
always up-to-date.

4.7 SOAP Confidentiality and Integrity

The Security Engine is the component responsible for
providing data confidentiality and integrity based on the
sensitivity of the data. To support a flexible encryption
scheme, XPRIDE identifies the content to be secured in
the security policy and provides a filter through which the
Web Service and its client can communicate and interact
securely. Application developers need not be concerned
about embedding security functions into the application
itself and are only required to supply the Security Engine
with identification of the data to be secured, how this data

Encrypt

Client
Program

Decrypt

Message
Transport

Message
Transport

Encrypt

Web Service

Decrypt

ClientOutputFilter ServiceInputFilter

ClientInputFilter ServiceOutputFilter

Client Server

Figure 5: SOAP filters in XPRIDE implementation

is to be secured and to what degree. It is the responsi-
bility of the XPRIDE Security Engine on the sender side
to perform the encryption and hashing operations on the
data and to construct the secure response or request based
on the incoming SOAP message and the security policy.

After the secured SOAP message is received, the Secu-
rity Engine on the recipient side intercepts the received
secure messages, performs the necessary integrity verifi-
cation and decryption operations based on the reference
table sent along with the secured message, reconstructs
the original message and delivers it to the recipient.

The following steps summarize the overall re-
quest/response model of XPRIDE, both on the client side
and on the service side. On the service side, XPRIDE (see
Figure 4 and Figure 5):

1) Receives an incoming request from a client

2) Decrypts and validates the request depending on the
attached reference table

3) Forwards the request after reconstructing it to the
appropriate Web Service

4) Gets the generated response from the Web Service

5) Checks the policy store to see if a policy exists for the
corresponding Web Service, and resolves the security
settings by parsing the security policy

6) Applies confidentiality and integrity settings on the
generated response

7) Attaches to the response an encrypted version of the
reference table that indicates what parts of the mes-
sage were encrypted at what locations, and

8) Forwards the response back to the client.

On the other hand, XPRIDE on the client side:

1) Gets a request from the client

2) Checks the policy store to see if the request should be
secured, and resolves the security settings by parsing
the corresponding security policy

International Journal of Network Security, Vol.8, No.3, PP.253–265, May 2009 260

3) Applies confidentiality and integrity settings on the
request as indicated by the policy

4) Attaches to the request an encrypted version of the
reference table

5) Sends the request to the appropriate Web Service

6) Waits for the response to arrive

7) Decrypts and validates integrity of the incoming re-
sponse depending on the attached reference table

8) Delivers the plain response to the client.

5 XPRIDE Implementation as a
SOAP Filter

XPRIDE is implemented as a SOAP filter using the Mi-
crosoft .Net 2.0 Framework with Visual Studio 2005, the
WSE 2.0 (Web Services Enhancement) class library and
IIS 5.1.

The implementation relies mainly on using the SOAP
filters model, provided by the WSE class library to access
the raw SOAP messages exchanged over the network be-
tween Web Services and their clients. The output filters
intercept the SOAP messages going out of an applica-
tion, while the input filters intercept the incoming SOAP
messages, as depicted in Figure 4. Therefore, SOAP fil-
ters seem as the ideal candidates to implement custom
security for Web Services, by applying XPRIDE security
techniques on the outgoing SOAP messages that are being
intercepted by these filters.

The general concept is depicted in Figure 5. The Out-
put Filter on the sender side:

1) Intercepts the outgoing SOAP message

2) Parses the security policy relevant to the sender if it
exists in the security policies repository

3) Parses the SOAP message to be sent

4) Defines the parts to be encrypted based on the policy

5) Applies encryption by using classes from the
XPRIDE class library (XPRIDELib)

6) Combines the compacted security policy, after en-
crypting it, with the secured message to be sent in
order for the ultimate receiver to be able to decrypt
the received SOAP message.

The Input Filter on the receiver side:

1) Intercepts the incoming SOAP message

2) Extracts the reference table that represents the com-
pacted security policy in case the message has been
secured

3) Parses the secured SOAP message

�

�

� �

� �

� �

� �

� � � � � � � � � � � � � � 	 �

�
�

� �

�
��

� �
�

� � � � � � � � � � � � � � � � �

 ! " # $ % & ' " % (
 ! " # $ % &) " % * (
 ! " # $ % & + " % * (
 ! " # $ % & , " % * (

- . / 0 % 1 2 3 4 5 6

Figure 6: XPRIDE SOAP filter implementation results

4) Decrypts the secured parts

5) Generates the original message that will be delivered
to the ultimate receiver.

5.1 Testing and Results

The tests were performed on a PC with the following
specifications: DELL Inspiron 510 with 1.6 GHz Centrino
CPU, 512 MB RAM and 40 GB hard drive. The operating
system used was Windows XP Professional SP2.

The prototype XPRIDE implementation was tested on
a sample data file of size 11 MB. In order to compare the
performance of content-based security to the performance
of bulk encryption, we implemented separate testing fil-
ters, both on the client and on the server sides. These
filters simply encrypt and decrypt the content of every
SOAP message to simulate a bulk encryption security sys-
tem.

The first test was derived assuming no encryption at
all; the time in this case is considered to be a reference
time, which we refer to as t0. Then, the same test was
repeated assuming bulk encryption by using the bulk en-
cryption testing filters. The additional time in this case,
due to the bulk encryption operations, is the difference
value t1 = time taken with bulk encryption −t0.

XPRIDE’s content-based encryption was tested next,
where the policy was repeatedly written to gradually in-
crease the percentage of the data that needs to be secured.
This percentage was varied as follows: 20%, 30%, 50%,
and up to 70% of the data. For each percentage value,
one regular expression is used in the policy. The data to
be encrypted is enclosed between two distinctive words
in the expression, which denote the start and end of the
sensitive data. To study the effect of increasing the num-
ber of regular expressions in a policy on the performance
of XPRIDE, the number of regular expressions used in
the policy was incremented while keeping the overall per-
centage of the encrypted data constant. The number of
regular expressions was increased to 3, 4, and 5. For ev-
ery test, we compute t2 = time taken with content-based
encryption −t0.

International Journal of Network Security, Vol.8, No.3, PP.253–265, May 2009 261

Table 1: XPRIDE time performance comparison (times are in seconds)

1 Reg. Exp. 3 Reg. Exp. 4 Reg. Exp. 5 Reg. Exp. No Encr. Bulk Encr.
20% Encr. 6.020 7.342 8.224 10.193

2.017 14.84530% Encr. 8.464 8.926 9.512 10.741
50% Encr. 11.681 12.187 13.138 13.656
70% Encr. 15.468 15.636 19.550 23.029

Tests were repeated several times and the average val-
ues were recorded. The values of the averaged times (t2)
using XPRIDE content-based encryption filters, for the
different cases listed above, are summarized in Table 1.
Figure 6 compares the bulk encryption time with the time
of content-based security for different data percentages,
when using one, three, four, or five regular expressions in
the security policy.

By examining the results shown in Table 1 and Fig-
ure 6, we can conclude that content-based Web Services
security, as performed by XPRIDE, remains efficient as
long as the percentage of the data that needs to be en-
crypted in relation to the whole data does not exceed
50%. Since, in most cases less than 20% of the Web data
traffic is classified as sensitive and needs to be encrypted,
XPRIDE is very efficient in such cases, and can reduce the
encryption overhead time by a factor of 2.5. This can be
the case in many Web Services, such as music download,
image download, and news and forecast Web Services.

5.2 Comparison with WS-Security

To compare the performance of XPRIDE with that of
WS-Security, we propose the following business scenario.
A large company headquarters connects to each of its
branches using Web Services to synchronize 11 MB of
data and keeping it up-to-date. The Web Services that
the business uses are described in Table 2.

The Web Services should transmit data securely since
they may contain sensitive information. The first sce-
nario is to use WS-Security and WS-SecurityPolicy to se-
cure the traffic of these Web Services. In this scenario,
the policy defines the XML elements that should be en-
crypted statically. Thus, by using the WS-SecurityPolicy,
and because WS-Security pays no attention to content,
all the traffic sent by Web Service A should be encrypted
even though it may contain non-sensitive documents that
need no encryption such as images and catalogs. Also,
no part of the traffic sent by Web Service B is to be en-
crypted because it includes international exchange rates
that are public data. Finally, a fraction of 35% of the
traffic sent by Web Service C is secured: this percentage
represents the XML elements that are defined as sensitive
in the policy. As a result, the percentage of the encrypted
data in the WS-Security scenario will be around 69% (see
Table 3.)

XPRIDE, on the other hand, allows the encryption to
be dynamically applied depending on the sensitivity of the

� �

� �

� �

� �

� �

� � � � � � �

� 	

�	
�

� 	
� �

�
� �
�� �

��
�	

� � � � � � � � � � � � � � ! " # � � $ $ % � & $

Figure 7: XPRIDE and WS-Security comparison

content, using regular expressions. We assume therefore
that the sensitive documents comprise 25% of the over-
all documents sent by Web Service A, and 30% of the HR
traffic sent by Web Service C. This reduces the fraction of
encrypted data in XPRIDE to 22.5% of the overall traffic
(see Table 3.) From Figure 6, and considering the case of
one regular expression, we can see that the time taken by
XPRIDE (at 22.5%) for 11 MB is 4.5 seconds. The time
taken by WS-Security corresponds to a 69% percentage,
and is around 13 seconds. Therefore, XPRIDE takes 65%
less time to secure the 11 MB of Web Services traffic de-
scribed above. Using the same approach, we estimated
the percentage of time decrease for three, four, and five
regular expressions. The results are shown in Figure 7.

6 XPRIDE Implementation as a
Reverse Proxy

The implementation of XPRIDE using SOAP filters is not
the only approach to utilize the XPRIDE architecture.
We have in fact implemented another XPRIDE prototype
using a reverse proxy. Such a proxy receives Web client
requests on behalf of a protected Web server, gets the re-
sponse from the (or one of the) Web servers, and sends
the response back to the client. The XPRIDE implemen-
tation in this case inserts code that is executed during the
phase between getting the response from the Web server
and sending it back to the client. The response stream is

International Journal of Network Security, Vol.8, No.3, PP.253–265, May 2009 262

Table 2: Web Services description

Service description % of total traffic
Web Service A Transmits documents such as purchase orders, invoices and reports 60
Web Service B Continuously transmits the currency exchange rates 15
Web Service C Performs human resources related transactions 25

Table 3: XPRIDE and WS-Security comparison

% Encrypted WS-Security % Encrypted XPRIDE
Service A 100 25
Service B 0 0
Service C 35 30

Total % Encrypted 69 22.5
Time Taken (seconds) 13 4.5

Figure 8: Reverse proxy structure

passed to the XPRIDE module to be secured before it is
sent back to the client.

6.1 Reverse Proxy

A reverse proxy is typically utilized to reduce the load on
a busy Web server by using a proxy between the server
and the Internet. The proxy responds on behalf of the
backend server. Figure 8 shows a typical reverse proxy
structure. From an outside client’s point of view, the re-
verse proxy is the actual HTTP server [19]. The benefit
of using a reverse proxy includes improved scalability, im-
proved security since the proxy server forms an additional
layer of defense and protection for the hidden Web servers,
improved load distribution, and caching of static content.

When a client browser makes an HTTP request, the
domain name system (DNS) will point the request to the
reverse proxy machine instead of the actual Web server.

In the prototype implementation of XPRIDE as a reserve
proxy, the requests initiated by clients to Web Services
that reside on the protected Web server are redirected
by the DNS to an HttpListener process on the proxy in-
stead. The HttpListener forwards the client’s request to
the appropriate Web server and waits for the response. In
this fashion, one XPRIDE reverse proxy may be shared
by multiple Web Services running on one or more Web
servers. After receiving the response, the data stream is
passed as is to an XPRIDE module that applies the suit-
able transformations on it. Then, the resulting secured
stream is sent back to the client. Figure 9 shows the
structure employed in this implementation of XPRIDE.

6.2 XPRIDE Security Module

Once the response stream is received by the HttpListener,
it is passed to the XPRIDE Security Module in order to
perform the security operations. The stream is initially
transformed to its Direct Internet Message Encapsulation
(DIME) [17] records structure. DIME is used to send
SOAP messages along with additional attachments, such
as binary files, XML fragments, and even other SOAP
messages, using standard protocols like HTTP [18]. In
case a DIME attachment is added, the SOAP response
message becomes the first DIME record, and all the other
records will follow the SOAP record.

The XPRIDE Security Module is used to secure the
DIME records that follow and which represent the at-
tachment files. For scalability, each attachment file type
(jpg, pdf, txt, etc.) is handled by its own security handler
to apply content-based encryption. In this prototype im-
plementation, only text attachment files are considered
for content-based security, while for other types of files
the decision is taken upon the policy to encrypt or not
encrypt the entire file. The text files are considered for
content-based security by relying on the regular expres-
sions defined in the security policy.

International Journal of Network Security, Vol.8, No.3, PP.253–265, May 2009 263

Figure 9: XPRIDE implementation as a reverse proxy

After securing all the records, the records are serialized
again into a stream using a DIMEWriter process, and the
resulting stream is returned to the HttpListener which
sends it in turn back to the client. A reference table that
indicates the number of DIME records that have been
secured along with the security level for each record is
formed and sent to the client as a new XPRIDE HTTP
header.

In order to perform verification and decryption oper-
ations on the client, a plug-in decryption module was
integrated with the client application for testing pur-
poses. This module is responsible for receiving the se-
cured stream, parsing it into DIME records, and applying
the decryption and verification operations needed on the
DIME records.

6.3 Testing and Results

The tests for the reverse proxy implementation of
XPRIDE were performed on a client PC with the fol-
lowing specifications: 1.6 GHz Pentium 4 CPU, 256 MB
RAM, and 40 GB hard drive. The server PC has the
following specifications: 1.6 GHz Centrino CPU, 512 MB
RAM and 40 GB hard drive. The operating system used
was Windows XP Professional SP2 on the two computers.

The objective of the tests in this implementation was
to examine the impact on latency caused by applying
XPRIDE security on attachment files, since the first im-
plementation (using SOAP filters) did not consider at-
tachment files. The testing operations compare the per-
formance of content-based security achieved by XPRIDE
with the performance of bulk encryption and that of WS-
Security.

The first test was derived assuming no encryption at
all; the time in this case is considered to be a reference
time, which again we refer to as t0. Then, the same test
was repeated assuming bulk encryption. The additional
time in this case, due to the bulk encryption operations,
is t1 = time taken with bulk encryption −t0.

The same test was repeated assuming WS-Security en-
cryption. To simulate the WS-SecurityPolicy, XPRIDE
policy is configured to encrypt the body element of the
SOAP message without encrypting the attachments, since
the implementation of the WS-SecurityPolicy, provided
in WSE does not support attachment security. The ad-
ditional time taken is t2 = time taken with WS-Security
encryption −t0.

XPRIDE content-based encryption was tested next,
where the policy was repeatedly written to gradually in-
crease the number of attachments that need to be secured
from one to four attachments of the following different
types: image, text, pdf, and Microsoft Office Word docu-
ment with the following sizes, respectively: 1.2 MB, 850
KB, 1.1 MB, and 1.2 MB. The number of regular expres-
sions used in the policy to secure the SOAP message was
increased from zero to two regular expressions where each
entry corresponds to almost 25% of the data. For every
test, we compute t3 = time taken with XPRIDE content-
based encryption −t0.

Tests were repeated several times and the average val-
ues were recorded. The values of the averaged times (t3)
using XPRIDE content-based encryption, for the different
cases listed above, are summarized in Table 4.

Figure 10 compares the XPRIDE times (t3) with bulk
encryption (t1) and WS-Security (t2) for different num-
ber of attachments, when one or two regular expressions,

International Journal of Network Security, Vol.8, No.3, PP.253–265, May 2009 264

Table 4: XPRIDE proxy performance comparison (times are in seconds)

1 Reg. Exp. 2 Reg. Exp. 3 Reg. Exp. No Encr. WS-Security Bulk Encr.
1 attachment 6.184 8.036 9.292

4.044 8.932 11.9602 attachments 6.472 8.756 9.908
3 attachments 7.200 9.056 11.680

�

�

�

�

�

� � � � � �

�	

�

�

��
��

�

�

� � � � � � � � � � � � � � � � � !

" # $ % & ' ($ '
" # $ % & ') $ '
* + , + - . / 0 1 2 3

4 / 5 6 ' 7 . 0 3 8 2

Figure 10: XPRIDE reverse proxy results

respectively, are used in the security policy.
The results presented in Table 4 and Figure 10 show

that XPRIDE content-based encryption on the attach-
ment results in a performance improvement, as measured
by the latency reduction, when compared with bulk en-
cryption and WS-Security. However, when the number of
attachments increases, and/or when the number of regu-
lar expressions increases, the overhead of XPRIDE erodes
its latency reduction, as compared to WS-Security.

We note that WS-Security is able to define using WS-
SecurityPolicy that a SOAP attachment should be se-
cured. However, it is neither able to apply content-based
security on it, nor able to specify a certain type of attach-
ments that need to be secured.

7 Conclusions

We presented in this paper the XPRIDE system, a policy-
driven Web Services security solution for securing the pri-
vacy and integrity of SOAP messages and attachments
exchanged between SOAP processors. XPRIDE depends
on security policies to define the parts of the message or
attachments that need to be encrypted.

The implementation of XPRIDE was presented in two
versions. The first version depends on SOAP filters, while
the second is designed as a reverse proxy gateway. In both
cases, the results show that XPRIDE provides an impor-
tant performance improvement as long as the number of
regular expressions specified in the policy is limited. For
typical Web traffic, XPRIDE is twice as fast as bulk en-
cryption, and 50% more efficient than WS-Security.

Acknowledgments

This work was supported by the Lebanese National Coun-
cil for Scientific Research, the University Research Board
of the American University of Beirut, ACT/Sun Microsys-
tems, and the Rathmann Family Foundation.

References

[1] W3C Recommendation “SOAP Version 1.2 Part 1:
Messaging framework,” Apr. 2007. (http://www.w3.
org/TR/soap12-part1/)

[2] A. Freier, P. Karlton, and P. Kocher, “The SSL pro-
tocol Version 3.0,” Internet-Draft, 1996.

[3] T. Dierks and C. Allen, “The TLS protocol - Version
1.0,” RFC 2246, 1999.

[4] T. Imamura, B. Dillaway, and E. Simon, “XML
encryption syntax and processing,” W3C Recom-
mendation, 2002. (http://www.w3.org/TR/xmlenc-
core/)

[5] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and
E. Simon, “XML-signature syntax and processing,”
W3C Recommendation, 2002. (http://www.w3.
org/TR/xmldsig-core/)

[6] OASIS Standard Specification, “Web services se-
curity: SOAP message security 1.1” (WS-Security
2004), Feb. 2006. (http://www.oasis-open.org/
committees/download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf)

[7] W. Itani, C. Gaspard, A. Kayssi, and A. Chehab,
“PRIDE: Policy-driven Web security for handheld
wireless devices,” Proceedings of IEEE GLOBECOM
2006, pp. 1-6, Nov. 2006.

[8] IBM, Microsoft, “Security in a Web services world: A
proposed architecture and roadmap,” Apr. 1, 2002.
(http://www.ibm.com/developerworks/library/
specification/ws-secmap/)

[9] G. Della-Libera et al., “Web services security policy
language (WS-security policy),” 2008. (http://specs.
xmlsoap.org/ws/2005/07/securitypolicy/ws-
securitypolicy.pdf)

[10] J. Daemen and V. Rijmen, “Rijndael, the advanced
encryption standard,” Dr. Dobb’s Journal, vol. 26,
no. 3, pp. 137-139, 2001.

[11] W. Itani and A. Kayssi, “SPECSA: a scalable, policy-
driven, extensible, and customizable security archi-
tecture for wireless enterprise applications,” Com-
puter Communications, vol. 27, no. 18, pp. 1825-
1839, 2004.

International Journal of Network Security, Vol.8, No.3, PP.253–265, May 2009 265

[12] K. Bhargavan, C. Fournet, and A. Gordon, “Veri-
fying policy-based security for Web services,” Pro-
ceedings of 11th ACM Conference on Computer and
Communications Security, pp. 268-277, 2004.

[13] E. B. Fernandez, “Two patterns for Web services se-
curity,” Proceedings of International Symposium on
Web Services and Applications, June 2004.

[14] K. Khoo and L. Zhou, “Managing Web services se-
curity,” Journal of Information Technology Manage-
ment, vol. 14, no. 3-4, 2004.

[15] M. Cremonini, S. Vimercati, E. Damiani, and P.
Samarati, “An XML-based approach to combine fire-
walls and Web services security specifications,” Pro-
ceedings of 2003 ACM Workshop on XML Security,
pp. 69-78, Oct. 2003.

[16] R. S. Swart, B. Marshall, M. E. Harris, K. A. Forcht,
and D. Olsen, “Security at the edge: rethinking secu-
rity in light of Web services,” Issues in Information
Systems, vol. 6, no. 2, pp. 103-109, 2005.

[17] H. Nielsen, H. Sanders, R. Butek, and S. Nash, “Di-
rect Internet message encapsulation,” Internet Draft,
June 2002.

[18] J. H. Gailey, “Sending files, attachments,
and SOAP messages via direct Internet
message encapsulation,” MSDN Magazine,
Dec. 2002. (http://msdn.microsoft.com/en-
us/magazine/cc188797.aspx)

[19] Visolve Squid Team, “Implementing reverse proxy
using squid,” Feb. 2002. (http://www.visolve.com/
squid/whitepapers/reverseproxy.php)

[20] Z. Radwan, C. Gaspard, A. Kayssi and A. Chehab,
“XPRIDE: policy-driven Web services security based
on XML content,” Proceedings of IEEE GLOBE-
COM 2007, pp. 553-558, Nov. 2007.

[21] N. Damianou, N. Dulay, E. Lupu and M. Sloman,
“Ponder: a language for specifying security and man-
agement policies for distributed systems,” Imperial
College Research Report DoC 2000/1, 2000.

Zein Radwan received her Bachelor’s degree in Informa-
tion Technology Engineering from Damascus University,
Syria in 2004, and her Master’s degree in Computer
and Communications Engineering from the American
University of Beirut, Lebanon in 2007.

Camille Gaspard received his Bachelor’s degree in
Computer Engineering from Aleppo University, Syria in
2004, and his Master’s degree in Computer and Com-
munications Engineering from the American University
of Beirut, Lebanon in 2006. He is currently pursuing a
PhD degree in Computer Science at Purdue University,
USA. His research interests include network security,
distributed systems security, and applied cryptography.

Ayman Kayssi received his BE with distinction in 1987
from the American University of Beirut, Lebanon and an
MSE in 1989 and PhD in 1993 from the University of
Michigan, Ann Arbor, USA, all in Electrical Engineering.
He is currently professor of Electrical and Computer
Engineering at the American University of Beirut, where
he has been working since 1993. His research interests
are in the areas of information security and trust, and
digital system testing.

Ali Chehab received his Bachelor’s degree in Electri-
cal Engineering from the American University of Beirut
(AUB), Lebanon in 1987, the Master’s degree in Electrical
Engineering from Syracuse University, and the PhD de-
gree in Electrical and Computer Engineering (ECE) from
the University of North Carolina at Charlotte, USA in
2002. From 1989 to 1998, he was a lecturer in the ECE
Department at AUB. He rejoined the AUB ECE Depart-
ment as Assistant Professor in 2002. His research interests
include digital system testing and information security.

